Article

Crystal structure of the GTPase-activating protein-related domain from IQGAP1.

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 04/2009; 284(22):14857-65. DOI: 10.1074/jbc.M808974200
Source: PubMed

ABSTRACT IQGAP1 is a 190-kDa molecular scaffold containing several domains required for interaction with numerous proteins. One domain is homologous to Ras GTPase-activating protein (GAP) domains. However, instead of accelerating hydrolysis of bound GTP on Ras IQGAP1, using its GAP-related domain (GRD) binds to Cdc42 and Rac1 and stabilizes their GTP-bound states. We report here the crystal structure of the isolated IQGAP1 GRD. Despite low sequence conservation, the overall structure of the GRD is very similar to the GAP domains from p120 RasGAP, neurofibromin, and SynGAP. However, instead of the catalytic "arginine finger" seen in functional Ras GAPs, the GRD has a conserved threonine residue. GRD residues 1099-1129 have no structural equivalent in RasGAP and are seen to form an extension at one end of the molecule. Because the sequence of these residues is highly conserved, this region likely confers a functionality particular to IQGAP family GRDs. We have used isothermal titration calorimetry to demonstrate that the isolated GRD binds to active Cdc42. Assuming a mode of interaction similar to that displayed in the Ras-RasGAP complex, we created an energy-minimized model of Cdc42.GTP bound to the GRD. Residues of the GRD that contact Cdc42 map to the surface of the GRD that displays the highest level of sequence conservation. The model indicates that steric clash between threonine 1046 with the phosphate-binding loop and other subtle changes would likely disrupt the proper geometry required for GTP hydrolysis.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adaptor proteins respond to stimuli and recruit downstream complexes using interactions conferred by associated protein domains and linear motifs. The ShcA adaptor contains two phosphotyrosine recognition modules responsible for binding activated receptors, resulting in the subsequent recruitment of Grb2 and activation of Ras/MAPK. However, there is evidence that Grb2-independent signalling from ShcA has an important role in development. Using mass spectrometry, we identified the multidomain scaffold IQGAP1 as a ShcA-interacting protein. IQGAP1 and ShcA co-precipitate and are co-recruited to membrane ruffles induced by activated receptors of the ErbB family, and a reduction in ShcA protein levels inhibits the formation of lamellipodia. We used NMR to characterize a direct, non-canonical ShcA PTB domain interaction with a helical fragment from the IQGAP1 N-terminal region that is pTyr-independent. This interaction is mutually exclusive with binding to a more conventional PTB domain peptide ligand from PTP-PEST. ShcA-mediated recruitment of IQGAP1 may have an important role in cytoskeletal reorganization downstream of activated receptors at the cell surface.
    The EMBO Journal 03/2010; 29(5):884-96. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: General or brain-region-specific decreases in spine number or morphology accompany major neuropsychiatric disorders. It is unclear, however, whether changes in spine density are specific for an individual mental process or disorder and, if so, which molecules confer such specificity. Here we identify the scaffolding protein IQGAP1 as a key regulator of dendritic spine number with a specific role in cognitive but not emotional or motivational processes. We show that IQGAP1 is an important component of NMDAR multiprotein complexes and functionally interacts with the NR2A subunits and the extracellular signal-regulated kinase 1 (ERK1) and ERK2 signaling pathway. Mice lacking the IQGAP1 gene exhibited significantly lower levels of surface NR2A and impaired ERK activity compared to their wild-type littermates. Accordingly, primary hippocampal cultures of IQGAP1(-/-) neurons exhibited reduced surface expression of NR2A and disrupted ERK signaling in response to NR2A-dependent NMDAR stimulation. These molecular changes were accompanied by region-specific reductions of dendritic spine density in key brain areas involved in cognition, emotion, and motivation. IQGAP1 knock-outs exhibited marked long-term memory deficits accompanied by impaired hippocampal long-term potentiation (LTP) in a weak cellular learning model; in contrast, LTP was unaffected when induced with stronger stimulation paradigms. Anxiety- and depression-like behavior remained intact. On the basis of these findings, we propose that a dysfunctional IQGAP1 gene contributes to the cognitive deficits in brain disorders characterized by fewer dendritic spines.
    Journal of Neuroscience 06/2011; 31(23):8533-42. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomics study was performed to investigate the specific protein expression profiles of HepG2 cells transfected with mutant HBV compared with wildtype HBV genome, aiming to identify the specific functions of SH3 binding domain (proline rich region) located in HBx. In addition to the cell movement and kinetics changes due to the expression of HBV genome we have observed previously, here we further targeted to explore the specific changes of cellular proteins and potential intracellular protein interactions, which might provide more information of the potential cellular mechanism of the differentiated cell movements. Specific changes of a number of proteins were shown in global protein profiling in HepG2 cells expressing wildtype HBV, including cell migration related proteins, and interestingly the changes were found recovered by SH3 binding domain mutated HBV. The distinctive expressions of proteins were validated by Western blot analysis.
    PLoS ONE 01/2014; 9(4):e95621. · 3.53 Impact Factor