Crystal structure of the GTPase-activating protein-related domain from IQGAP1.

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 04/2009; 284(22):14857-65. DOI: 10.1074/jbc.M808974200
Source: PubMed

ABSTRACT IQGAP1 is a 190-kDa molecular scaffold containing several domains required for interaction with numerous proteins. One domain is homologous to Ras GTPase-activating protein (GAP) domains. However, instead of accelerating hydrolysis of bound GTP on Ras IQGAP1, using its GAP-related domain (GRD) binds to Cdc42 and Rac1 and stabilizes their GTP-bound states. We report here the crystal structure of the isolated IQGAP1 GRD. Despite low sequence conservation, the overall structure of the GRD is very similar to the GAP domains from p120 RasGAP, neurofibromin, and SynGAP. However, instead of the catalytic "arginine finger" seen in functional Ras GAPs, the GRD has a conserved threonine residue. GRD residues 1099-1129 have no structural equivalent in RasGAP and are seen to form an extension at one end of the molecule. Because the sequence of these residues is highly conserved, this region likely confers a functionality particular to IQGAP family GRDs. We have used isothermal titration calorimetry to demonstrate that the isolated GRD binds to active Cdc42. Assuming a mode of interaction similar to that displayed in the Ras-RasGAP complex, we created an energy-minimized model of Cdc42.GTP bound to the GRD. Residues of the GRD that contact Cdc42 map to the surface of the GRD that displays the highest level of sequence conservation. The model indicates that steric clash between threonine 1046 with the phosphate-binding loop and other subtle changes would likely disrupt the proper geometry required for GTP hydrolysis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiology studies revealed the connection between several types of cancer and type 2 diabetes (T2D) and suggested that T2D is both a symptom and a risk factor of pancreatic cancer. High level of circulating insulin (hyperinsulinemia) in obesity has been implicated in promoting aggressive types of cancers. Insulin resistance, a symptom of T2D, pressures pancreatic β-cells to increase insulin secretion, leading to hyperinsulinemia, which in turn leads to a gradual loss of functional β-cell mass, thus indicating a fine balance and interplay between β-cell function and mass. While the mechanisms of these connections are unclear, the mTORC1-Akt signaling pathway has been implicated in controlling β-cell function and mass, and in mediating the link of cancer and T2D. However, incomplete understating of how the pathway is regulated and how it integrates body metabolism has hindered its efficacy as a clinical target. The IQ motif containing GTPase activating protein 1 (IQGAP1)-Exocyst axis is a growth factor- and nutrient-sensor that couples cell growth and division. Here we discuss how IQGAP1-Exocyst, through differential interactions with Rho-type of small guanosine triphosphatases (GTPases), acts as a rheostat that modulates the mTORC1-Akt and MAPK signals, and integrates β-cell function and mass with insulin signaling, thus providing a molecular mechanism for cancer initiation in diabetes. Delineating this regulatory pathway may have the potential of contributing to optimizing the efficacy and selectivity of future therapies for cancer and diabetes.
    Biochimica et Biophysica Acta 04/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.
    Cellular and Molecular Life Sciences CMLS 03/2014; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomics study was performed to investigate the specific protein expression profiles of HepG2 cells transfected with mutant HBV compared with wildtype HBV genome, aiming to identify the specific functions of SH3 binding domain (proline rich region) located in HBx. In addition to the cell movement and kinetics changes due to the expression of HBV genome we have observed previously, here we further targeted to explore the specific changes of cellular proteins and potential intracellular protein interactions, which might provide more information of the potential cellular mechanism of the differentiated cell movements. Specific changes of a number of proteins were shown in global protein profiling in HepG2 cells expressing wildtype HBV, including cell migration related proteins, and interestingly the changes were found recovered by SH3 binding domain mutated HBV. The distinctive expressions of proteins were validated by Western blot analysis.
    PLoS ONE 01/2014; 9(4):e95621. · 3.73 Impact Factor