Worldwide distribution of HIV type 1 epitopes recognized by human anti-V3 monoclonal antibodies.

New York University School of Medicine, Departments of Pharmacology, Pathology and Environmental Medicine, New York, New York 10016, USA.
AIDS research and human retroviruses (Impact Factor: 2.18). 04/2009; 25(4):441-50. DOI: 10.1089/aid.2008.0188
Source: PubMed

ABSTRACT Epitopes, also known as antigenic determinants, are small clusters of specific atoms within macromolecules that are recognized by the immune system. Such epitopes can be targeted with vaccines designed to protect against specific pathogens. The third variable loop (V3 loop) of the HIV-1 pathogen's gp120 surface envelope glycoprotein can be a highly sensitive neutralization target. We derived sequence motifs for the V3 loop epitopes recognized by the human monoclonal antibodies (mAbs) 447-52D and 2219. Searching the HIV database for the occurrence of each epitope motif in worldwide viruses and correcting the results based on published WHO epidemiology reveal that the 447-52D epitope we defined occurs in 13% of viruses infecting patients worldwide: 79% of subtype B viruses, 1% of subtype C viruses, and 7% of subtype A/AG sequences. In contrast, the epitope we characterized for human anti-V3 mAb 2219 is present in 30% of worldwide isolates but is evenly distributed across the known HIV-1 subtypes: 48% of subtype B strains, 40% of subtype C, and 18% of subtype A/AG. Various assays confirmed that the epitopes corresponding to these motifs, when expressed in the SF162 Env backbone, were sensitively and specifically neutralized by the respective mAbs. The method described here is capable of accurately determining the worldwide occurrence and subtype distribution of any crystallographically resolved HIV-1 epitope recognized by a neutralizing antibody, which could be useful for multivalent vaccine design. More importantly, these calculations demonstrate that globally relevant, structurally conserved epitopes are present in the sequence variable V3 loop.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antibody B4e8 exhibits modest cross-neutralizing activity, with preference for HIV subtype B. This preference might be explained by B4e8׳s extensive interaction with Arg315, which occurs at the center of most subtype B V3 sequences but is replaced by Gln in subtype C. The extent to which B4e8׳s ability to neutralize subtype C strains is hindered by Gln315 and/or other factors, e.g. epitope masking, is unclear. We confirmed here that an Arg315-to-Gln substitution in a subtype B virus abrogates B4e8 neutralizing activity. Conversely, B4e8-resistant subtype C viruses were rendered sensitive upon Gln 315-to-Arg substitution. V2 region swapping between B4e8-sensitive and- resistant subtype C strains revealed a role for V2 in limiting B4e8 access, but this was less significant than the absence of Arg315. Our findings, while illustrating the importance of Arg315 for B4e8, suggest that some subtype C strains may be vulnerable to B4e8 derivatives capable of binding stronger to Gln315-containing sequences.
    Virology. 06/2014; 462-463C:98-106.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design.
    PLoS ONE 01/2014; 9(2):e89987. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We designed synthetic, epitope-focused immunogens that preferentially display individual neutralization epitopes targeted by cross-subtype anti-HIV V3 loop neutralizing monoclonal antibodies (mAbs). Vaccination of rabbits with these immunogens resulted in the elicitation of distinct polyclonal serum Abs that exhibit cross-subtype neutralization specificities mimicking the mAbs that guided the design. Our results prove the principle that a predictable range of epitope-specific polyclonal cross-subtype HIV-1 neutralizing Abs can be intentionally elicited in mammals by vaccination. The precise boundaries of the epitopes and conformational flexibility in the presentation of the epitopes in the immunogen appeared to be important for successful elicitation. This work may serve as a starting point for translating the activities of human broadly neutralizing anti-HIV-1 monoclonal antibodies (bNAbs) into matched immunogens that can contribute to an efficacious HIV-1 vaccine.
    Vaccine. 07/2014;


Available from