Article

Bacterial peptidoglycan degrading enzymes and their impact on host muropeptide detection.

University of Colorado, Denver, Colo, USA.
Journal of Innate Immunity (Impact Factor: 4.46). 02/2009; 1(2):88-97. DOI:10.1159/000181181
Source: PubMed

ABSTRACT Peptidoglycan (PGN) is a major component of the bacterial cell envelope in both Gram-positive and Gram-negative bacteria. These muropeptides can be produced or modified by the activity of bacterial glycolytic and peptidolytic enzymes referred to as PGN hydrolases and autolysins. Some of these bacterial enzymes are crucial for bacterial pathogenicity and have been shown to modulate muropeptide release and/or host innate immune responses. The ability of muropeptides to modulate host responses is due to the fact that eukaryotes do not produce PGN and have instead evolved numerous strategies to detect intact PGN and PGN fragments (muropeptides). Here we review the structure of PGN and introduce the various bacterial enzymes known to degrade or modify bacterial PGN. Host factors involved in PGN and muropeptide detection are also briefly discussed, as are examples of how specific bacterial pathogens use PGN degradation and modification to subvert host innate immunity.

0 0
 · 
3 Bookmarks
 · 
95 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Measures that bolster the resolution phase of infectious diseases may offer new opportunities for improving outcome. Here we show that inactivation of microbial lipopolysaccharides (LPS) can be required for animals to recover from the innate immune tolerance that follows exposure to Gram-negative bacteria. When wildtype mice are exposed to small parenteral doses of LPS or Gram-negative bacteria, their macrophages become reprogrammed (tolerant) for a few days before they resume normal function. Mice that are unable to inactivate LPS, in contrast, remain tolerant for several months; during this time they respond sluggishly to Gram-negative bacterial challenge, with high mortality. We show here that prolonged macrophage reprogramming is maintained in vivo by the persistence of stimulatory LPS molecules within the cells' in vivo environment, where naïve cells can acquire LPS via cell-cell contact or from the extracellular fluid. The findings provide strong evidence that inactivation of a stimulatory microbial molecule can be required for animals to regain immune homeostasis following parenteral exposure to bacteria. Measures that disable microbial molecules might enhance resolution of tissue inflammation and help restore innate defenses in individuals recovering from many different infectious diseases.
    PLoS Pathogens 05/2013; 9(5):e1003339. · 8.14 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Bacterial shape has always been hypothesized to play an important role in the biology of a species and in the ability of certain bacteria to influence human health. The recent discovery of peptidoglycan hydrolases that modulate shape has now allowed this hypothesis to be addressed directly. Genetic, biochemical, and phenotypic studies have found that changes in shape and underlying peptidoglycan structure influence many pathogenic attributes including surviving unfavorable conditions, predation, transmission, colonization, and host interactions. The diversity of bacterial shapes, niches, and lifestyles is also reflected in diverse mechanisms of hydrolase regulation, critical for maintaining peptidoglycan integrity and biological properties of the cell. Future studies will build on the current work described and further elucidate the intersection of peptidoglycan hydrolase activity, shape, and disease outcome.
    Current opinion in microbiology 10/2013; · 7.87 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Staphylococcus aureus is a major human and animal pathogen. Autolysins regulate the growth, turnover, cell lysis, biofilm formation, and the pathogenicity of S. aureus. Atl is the major autolysin in S. aureus. The biochemical and structural studies of staphylococcal Atl have been limited due to difficulty in cloning, high level overexpression, and purification of this protein. This study describes successful cloning, high level over-expression, and purification of two forms of fully functional Atl proteins. These pure proteins can be used to study the functional and structural properties of this important protein.
    International Journal of Microbiology 01/2014; 2014:615965.

Full-text

View
1 Download
Available from

Jessica Humann