Chlorhexidine-Impregnated Sponges and Less Frequent Dressing Changes for Prevention of Catheter-Related Infections in Critically Ill Adults

INSERM U823, University Joseph Fourier, Albert Boniot Institute, 38076, Grenoble Cedex, France.
JAMA The Journal of the American Medical Association (Impact Factor: 35.29). 04/2009; 301(12):1231-41. DOI: 10.1001/jama.2009.376
Source: PubMed


Use of a chlorhexidine gluconate-impregnated sponge (CHGIS) in intravascular catheter dressings may reduce catheter-related infections (CRIs). Changing catheter dressings every 3 days may be more frequent than necessary.
To assess superiority of CHGIS dressings regarding the rate of major CRIs (clinical sepsis with or without bloodstream infection) and noninferiority (less than 3% colonization-rate increase) of 7-day vs 3-day dressing changes.
Assessor-blind, 2 x 2 factorial, randomized controlled trial conducted from December 2006 through June 2008 and recruiting patients from 7 intensive care units in 3 university and 2 general hospitals in France. Patients were adults (>18 years) expected to require an arterial catheter, central-vein catheter, or both inserted for 48 hours or longer.
Use of CHGIS vs standard dressings (controls). Scheduled change of unsoiled adherent dressings every 3 vs every 7 days, with immediate change of any soiled or leaking dressings.
Major CRIs for comparison of CHGIS vs control dressings; colonization rate for comparison of 3- vs 7-day dressing changes.
Of 2095 eligible patients, 1636 (3778 catheters, 28,931 catheter-days) could be evaluated. The median duration of catheter insertion was 6 (interquartile range [IQR], 4-10) days. There was no interaction between the interventions. Use of CHGIS dressings decreased the rates of major CRIs (10/1953 [0.5%], 0.6 per 1000 catheter-days vs 19/1825 [1.1%], 1.4 per 1000 catheter-days; hazard ratio [HR], 0.39 [95% confidence interval {CI}, 0.17-0.93]; P = .03) and catheter-related bloodstream infections (6/1953 catheters, 0.40 per 1000 catheter-days vs 17/1825 catheters, 1.3 per 1000 catheter-days; HR, 0.24 [95% CI, 0.09-0.65]). Use of CHGIS dressings was not associated with greater resistance of bacteria in skin samples at catheter removal. Severe CHGIS-associated contact dermatitis occurred in 8 patients (5.3 per 1000 catheters). Use of CHGIS dressings prevented 1 major CRI per 117 catheters. Catheter colonization rates were 142 of 1657 catheters (7.8%) in the 3-day group (10.4 per 1000 catheter-days) and 168 of 1828 catheters (8.6%) in the 7-day group (11.0 per 1000 catheter-days), a mean absolute difference of 0.8% (95% CI, -1.78% to 2.15%) (HR, 0.99; 95% CI, 0.77-1.28), indicating noninferiority of 7-day changes. The median number of dressing changes per catheter was 4 (IQR, 3-6) in the 3-day group and 3 (IQR, 2-5) in the 7-day group (P < .001).
Use of CHGIS dressings with intravascular catheters in the intensive care unit reduced risk of infection even when background infection rates were low. Reducing the frequency of changing unsoiled adherent dressings from every 3 days to every 7 days modestly reduces the total number of dressing changes and appears safe. Identifier: NCT00417235.

Download full-text


Available from: Jean-Ralph Zahar,
  • Source
    • "As previously described, two other products containing CHG that are indicated for use in vascular access are a CHG-impregnated foam disc (‘CHG foam’) and a CHG-laden gel pad incorporated into a film dressing (‘CHG gel’). Clinical studies have proved the former effective at reducing skin colonization at the catheter insertion site,39 catheter tip colonization40–42 and CR-BSIs.25,26 A clinical study using the CHG gel also showed it to be effective at reducing CR-BSIs.27 "
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the antimicrobial activity of a new, transparent composite film dressing, whose adhesive contains chlorhexidine gluconate (CHG), against the native microflora present on human skin. CHG-containing adhesive film dressings and non-antimicrobial control film dressings were applied to the skin on the backs of healthy human volunteers without antiseptic preparation. Dressings were removed 1, 4 or 7 days after application. The bacterial populations underneath were measured by quantitative cultures (cylinder-scrub technique) and compared with one another as a function of time. The mean baseline microflora recovery was 3.24 log10 cfu/cm(2). The mean log reductions from baseline measured from underneath the CHG-containing dressings were 0.87, 0.78 and 1.30 log10 cfu/cm(2) on days 1, 4 and 7, respectively, compared with log reductions of 0.67, -0.87 and -1.29 log10 cfu/cm(2) from underneath the control film dressings. There was no significant difference between the log reductions of the two treatments on day 1, but on days 4 and 7 the log reduction associated with the CHG adhesive was significantly higher than that associated with the control adhesive. The adhesive containing CHG was associated with a sustained antimicrobial effect that was not present in the control. Incorporating the antimicrobial into the adhesive layer confers upon it bactericidal properties in marked contrast to the non-antimicrobial adhesive, which contributed to bacterial proliferation when the wear time was ≥4 days.
    Journal of Antimicrobial Chemotherapy 04/2014; 69(8). DOI:10.1093/jac/dku096 · 5.31 Impact Factor
  • Source
    • "The authors concluded that it would not be cost effective to redress catheters at periodic intervals. More recently, also for application of transparent polyurethane dressings and for chlorhexidine-impregnated sponges, it was shown that less-frequent catheter-dressing changes do not increase the risk for catheter infection, while significantly reducing patient discomfort and costs [25,26]. On the basis of the studies described, the CDC guidelines for prevention of catheter-infection advise changing dressings at least every 7 days, but do not advise against more-frequent dressing change [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Catheter-related bloodstream infections (CRBSIs) associated with short-term central venous catheters (CVCs) in intensive care unit (ICU) patients are a major clinical problem. Bacterial colonization of the skin at the CVC insertion site is an important etiologic factor for CRBSI. The aim of this study was to assess the efficacy of medical-grade honey in reducing bacterial skin colonization at insertion sites. A prospective, single-center, open-label randomized controlled trial was performed at the ICU of a university hospital in The Netherlands to assess the efficacy of medical-grade honey to reduce skin colonization of insertion sites. Medical-grade honey was applied in addition to standard CVC-site dressing and disinfection with 0.5% chlorhexidine in 70% alcohol. Skin colonization was assessed on a daily basis before CVC-site disinfection. The primary end point was colonization of insertion sites with >100 colony-forming units at the last sampling before removal of the CVC or transfer of the patient from the ICU. Secondary end points were quantitative levels of colonization of the insertion sites and colonization of insertion sites stratified for CVC location. Colonization of insertion sites was not affected by the use of medical-grade honey, as 44 (34%) of 129 and 36 (34%) of 106 patients in the honey and standard care groups, respectively, had a positive skin culture (P = 0.98). Median levels of skin colonization at the last sampling were 1 (0 to 2.84) and 1 (0 to 2.70) log colony-forming units (CFUs)/swab for the honey and control groups, respectively (P = 0.94). Gender, days of CVC placement, CVC location, and CVC type were predictive for a positive skin culture. Correction for these variables did not change the effect of honey on skin-culture positivity. Medical-grade honey does not affect colonization of the skin at CVC insertion sites in ICU patients when applied in addition to standard disinfection with 0.5% chlorhexidine in 70% alcohol. Trial registration Netherlands Trial Registry, NTR1652.
    Critical care (London, England) 10/2012; 16(5):R214. DOI:10.1186/cc11849 · 4.48 Impact Factor
  • Source
    • "There is no particular dressing type that has shown benefit over another. A chlorhexidineimpregnated foam dressing has not been found to provide extra protection against infection in an open labelled study (Camins et al., 2010), despite previous evidence to the contrary in patients in an intensive care setting (Timsit et al., 2009). Maximal sterile barrier precautions were further studied in a recent Korean study. "

    Technical Problems in Patients on Hemodialysis, 12/2011; , ISBN: 978-953-307-403-0
Show more