Article

Analytical method for simultaneously measuring ex vivo drug receptor occupancy and dissociation rate: application to (R)-dimethindene occupancy of central histamine H1 receptors.

Division of Emerging New Technologies, Neurocrine Biosciences, San Diego, California, USA.
Journal of Receptor and Signal Transduction Research (Impact Factor: 1.63). 02/2009; 29(2):84-93. DOI: 10.1080/10799890902721339
Source: PubMed

ABSTRACT We introduce a novel experimental method to determine both the extent of ex vivo receptor occupancy of administered compound and its dissociation rate constant (k4). [Here, we reference k4 as the rate of offset of unlabeled ligand in convention with Motulsky and Mahan (1)]. We derived a kinetic rate equation based on the dissociation rate constant for an unlabeled compound competing for the same site as a labeled compound and describe a model to simulate fractional occupancy. To validate our model, we performed in vitro kinetics and ex vivo occupancy experiments in rat cortex with varying concentrations of (R)-dimethindene, a sedating antihistamine. Brain tissue was removed at various times post oral administration, and histamine H1 receptor ligand [3H]-doxepin binding to homogenates from drug-treated or vehicle-treated rats was measured at multiple time points at room temperature. Fractional occupancy and k4 for (R)-dimethindene binding to H1 receptors were calculated by using our proposed model. Rats dosed with 30 and 60 mg/kg (R)-dimethindene showed 42% and 67% occupancy of central H1 receptors, respectively. These results were comparable to occupancy data determined by equilibrium radioligand binding. In addition, drug k4 rate determined by using our ex vivo method was equivalent to k4 determined by in vitro competition kinetics (dissociation half-life t(1/2) approximately 30 min). The outlined method can be used to assess, by simulation and experiment, occupancy for compounds based on dissociation rate constants and contributes to current efforts in drug optimization to profile antagonist efficacy in terms of its kinetic drug-target binding parameters. Data described by the method may be analyzed with commercially available software. Suggested fitting procedures are given in the appendix.

1 Bookmark
 · 
53 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT.
    Medicinal Research Reviews 02/2014; 34(4). · 8.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: In many situations, optimal drug therapy requires continuing high levels of target occupancy and this notion has led pharmacologists to focus their attention on the rate by which drug candidates dissociate from their target. To this end, radioligand dissociation experiments are often carried out on in vitro models, such as intact cells and the membranes thereof, but the interpretation of the collected data is sometimes ambiguous. AREAS COVERED: Pharmacodynamics is concerned about what the drug does to the target and, in this respect, allosteric modulation constitutes a quite novel, very promising research topic. The ability of unlabeled drugs to accelerate radioligand dissociation is often advocated to be a hallmark of such mechanism. Yet, the present computerized simulations reveal that competitive drugs produce the same effect by preventing hindered diffusion- and "forced proximity"-related rebinding of the radioligand. Herein, the authors provide hints to discern among those mechanisms. EXPERT OPINION: A critical, but constructive appraisal of radioligand dissociation binding data leads to the viewpoint that, from a physiological perspective, dissociation from confluent target-expressing plated cells, when in a naïve medium, is likely to provide the most pertinent insight in that ligand's in vivo residence time.
    Expert Opinion on Drug Discovery 06/2012; 7(7):583-95. · 3.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic nicotine administration increases α4β2 neuronal nicotinic acetylcholine receptor (nAChR) density in brain. This up-regulation probably contributes to the development and/or maintenance of nicotine dependence. nAChR up-regulation is believed to be triggered at the ligand binding site, so it is not surprising that other nicotinic ligands also up-regulate nAChRs in the brain. These other ligands include varenicline, which is currently used for smoking cessation therapy. Sazetidine-A (saz-A) is a newer nicotinic ligand that binds with high affinity and selectivity at α4β2* nAChRs. In behavioral studies, saz-A decreases nicotine self-administration and increases performance on tasks of attention. We report here that, unlike nicotine and varenicline, chronic administration of saz-A at behaviorally active and even higher doses does not up-regulate nAChRs in rodent brains. We used a newly developed method involving radioligand binding to measure the concentrations and nAChR occupancy of saz-A, nicotine, and varenicline in brains from chronically treated rats. Our results indicate that saz-A reached concentrations in the brain that were ∼150 times its affinity for α4β2* nAChRs and occupied at least 75% of nAChRs. Thus, chronic administration of saz-A did not up-regulate nAChRs despite it reaching brain concentrations that are known to bind and desensitize virtually all α4β2* nAChRs in brain. These findings reinforce a model of nicotine addiction based on desensitization of up-regulated nAChRs and introduce a potential new strategy for smoking cessation therapy in which drugs such as saz-A can promote smoking cessation without maintaining nAChR up-regulation, thereby potentially increasing the rate of long-term abstinence from nicotine.
    Journal of Pharmacology and Experimental Therapeutics 08/2012; 343(2):441-50. · 3.89 Impact Factor