Article

Social isolation alters neuroinflammatory response to stroke.

Departments of Neuroscience and Psychology and Institute of Behavioral Medicine Research, Ohio State University, 29 Psychology Building, 1835 Neil Avenue, Columbus, OH 43210, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2009; 106(14):5895-900. DOI: 10.1073/pnas.0810737106
Source: PubMed

ABSTRACT Social isolation has dramatic long-term physiological and psychological consequences; however, the mechanisms by which social isolation influences disease outcome are largely unknown. The purpose of the present study was to investigate the effects of social isolation on neuronal damage, neuroinflammation, and functional outcome after focal cerebral ischemia. Male mice were socially isolated (housed individually) or pair housed with an ovariectomized female before induction of stroke, via transient intraluminal middle cerebral artery occlusion (MCAO), or SHAM surgery. In these experiments, peri-ischemic social isolation decreases poststroke survival rate and exacerbates infarct size and edema development. The social influence on ischemic damage is accompanied by an altered neuroinflammatory response; specifically, central interleukin-6 (IL-6) signaling is down-regulated, whereas peripheral IL-6 is up-regulated, in isolated relative to socially housed mice. In addition, intracerebroventricular injection of an IL-6 neutralizing antibody (10 ng) eliminates social housing differences in measures of ischemic outcome. Taken together, these data suggest that central IL-6 is an important mediator of social influences on stroke outcome.

0 Bookmarks
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several behavioral interventions, based on social enrichment and observational learning are applied in treatment of neuropsychiatric disorders. However, the mechanism of such modulatory effect and the safety of applied methods on individuals involved in social support need further investigation. We took advantage of known differences between inbred mouse strains to reveal the effect of social enrichment on behavior and neurobiology of animals with different behavioral phenotypes. C57BL/6 and DBA/2 female mice displaying multiple differences in cognitive, social, and emotional behavior were group-housed either in same-strain or in mixed-strain conditions. Comprehensive behavioral phenotyping and analysis of expression of several plasticity- and stress-related genes were done to measure the reciprocal effects of social interaction between the strains. Contrary to our expectation, mixed housing did not change the behavior of DBA/2 mice. Nevertheless, the level of serum corticosterone and the expression of glucocorticoid receptor Nr3c1 in the brain were increased in mixed housed DBA/2 as compared with those of separately housed DBA/2 mice. In contrast, socially active C57BL/6 animals were more sensitive to the mixed housing, displaying several signs of stress: alterations in learning, social, and anxiety-like behavior and anhedonia. These behavioral impairments were accompanied by the elevated serum corticosterone and the reduced expression of Nr3c1, as well as the elevated Bdnf levels in the cortex and hippocampus. Our results demonstrate the importance of social factors in modulation of both behavior and the underlying neurobiological mechanisms in stress response, and draw attention to the potential negative impact of social interventions for individuals involved in social support.
    Frontiers in Behavioral Neuroscience 01/2014; 8:257. · 4.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disease is a ubiquitous and powerful evolutionary force. Hosts have evolved behavioural and physiological responses to disease that are associated with increased survival. Behavioural modifications, known as 'sickness behaviours', frequently involve symptoms such as lethargy, somnolence and anorexia. Current research has demonstrated that the social environment is a potent modulator of these behaviours: when conflicting social opportunities arise, animals can decrease or entirely forgo experiencing sickness symptoms. Here, I review how different social contexts, such as the presence of mates, caring for offspring, competing for territories or maintaining social status, affect the expression of sickness behaviours. Exploiting the circumstances that promote this behavioural plasticity will provide new insights into the evolutionary ecology of social behaviours. A deeper understanding of when and how this modulation takes place may lead to better tools to treat symptoms of infection and be relevant for the development of more efficient disease control programmes.
    Proceedings of the Royal Society B: Biological Sciences 08/2014; 281(1788). · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biotelemetry can contribute towards reducing animal numbers and suffering in disciplines including physiology, pharmacology and behavioural research. However, the technique can also cause harm to animals, making biotelemetry a ‘refinement that needs refining’. Current welfare issues relating to the housing and husbandry of animals used in biotelemetry studies are single vs. group housing, provision of environmental enrichment, long term laboratory housing and use of telemetered data to help assess welfare. Animals may be singly housed because more than one device transmits on the same wavelength; due to concerns regarding damage to surgical sites; because they are wearing exteriorised jackets; or if monitoring systems can only record from individually housed animals. Much of this can be overcome by thoughtful experimental design and surgery refinements. Similarly, if biotelemetry studies preclude certain enrichment items, husbandry refinement protocols can be adapted to permit some environmental stimulation. Nevertheless, long-term laboratory housing raises welfare concerns and maximum durations should be defined. Telemetered data can be used to help assess welfare, helping to determine endpoints and refine future studies. The above measures will help to improve data quality as well as welfare, because experimental confounds due to physiological and psychological stress will be minimised. Open access http://www.mdpi.com/2076-2615/4/2/361
    Animals. 06/2014; 4(2):361-373.

Full-text (2 Sources)

Download
20 Downloads
Available from
May 15, 2014