Article

3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry.

Department of Radiation Oncology (MAASTRO), GROW Research Institute, University Medical Centre Maastricht, Maastricht, The Netherlands.
International journal of radiation oncology, biology, physics (Impact Factor: 4.59). 05/2009; 73(5):1580-7. DOI: 10.1016/j.ijrobp.2008.11.051
Source: PubMed

ABSTRACT To develop a method that reconstructs, independently of previous (planning) information, the dose delivered to patients by combining in-room imaging with transit dose measurements during treatment.
A megavoltage cone-beam CT scan of the patient anatomy was acquired with the patient in treatment position. During treatment, delivered fields were measured behind the patient with an electronic portal imaging device. The dose information in these images was back-projected through the cone-beam CT scan and used for Monte Carlo simulation of the dose distribution inside the cone-beam CT scan. Validation was performed using various phantoms for conformal and IMRT plans. Clinical applicability is shown for a head-and-neck cancer patient treated with IMRT.
For single IMRT beams and a seven-field IMRT step-and-shoot plan, the dose distribution was reconstructed within 3%/3mm compared with the measured or planned dose. A three-dimensional conformal plan, verified using eight point-dose measurements, resulted in a difference of 1.3 +/- 3.3% (1 SD) compared with the reconstructed dose. For the patient case, planned and reconstructed dose distribution was within 3%/3mm for about 95% of the points within the 20% isodose line. Reconstructed mean dose values, obtained from dose-volume histograms, were within 3% of prescribed values for target volumes and normal tissues.
We present a new method that verifies the dose delivered to a patient by combining in-room imaging with the transit dose measured during treatment. This verification procedure opens possibilities for offline adaptive radiotherapy and dose-guided radiotherapy strategies taking into account the dose distribution delivered during treatment sessions.

1 Bookmark
 · 
172 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stereotactic ablative body radiotherapy (SABR) is a non-invasive treatment option for inoperable patients or patients with irresectable liver tumors. Outcome and toxicity were evaluated retrospectively in this single-institution patient cohort. Between 2010 and 2014, 39 lesions were irradiated in 33 consecutive patients (18 male, 15 female, median age of 68 years). All the lesions were liver metastases (n = 34) or primary hepatocellular carcinomas (n = 5). The patients had undergone four-dimensional respiration-correlated PET-CT for treatment simulation to capture tumor motion. We analyzed local control with a focus on CT-based response at three months, one year and two years after treatment, looking at overall survival and the progression pattern. All patients were treated with hypofractionated image-guided stereotactic radiotherapy. The equivalent dose in 2 Gy fractions varied from 62.5 Gy to 150 Gy, delivered in 3-10 fractions (median dose 93.8 Gy, alpha/beta = 10). The CT-based regression pattern three months after radiotherapy revealed partial regression in 72.7% of patients with a complete remission in 27.3% of the cases. The site of first progression was predominantly distant. One- and two-year overall survival rates were 85.4% and 68.8%, respectively. No toxicity of grade 2 or higher according to the NCI Common Terminology Criteria for Adverse Events v4.0 was observed. SABR is a safe and efficient treatment for selected inoperable patients or irresectable tumors of the liver. Future studies should combine SABR with systemic treatment acting in synergy with radiation, such as immunological interventions or hypoxic cell radiosensitizers to prevent distant relapse. Copyright © 2014 Elsevier Ltd. All rights reserved.
    11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treatment plan verification of intensity modulated radiotherapy (IMRT) is generally performed with the gamma index (GI) evaluation method, which is difficult to extrapolate to clinical implications. Incorporating Dose Volume Histogram (DVH) information can compensate for this. The aim of this study was to evaluate DVH-based treatment plan verification in addition to the GI evaluation method for head and neck IMRT.
    Radiotherapy and Oncology 08/2014; · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim To present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement. Background DynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction. Materials and methods Four different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used. Results In the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed. Conclusion Developed dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution.
    Reports of Practical Oncology and Radiotherapy 11/2014;

Full-text

Download
167 Downloads
Available from
May 31, 2014