Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles

Department of Medical Sciences, Leukemia Study Centre, University of Milan, Hematology 1-CTMO, Foundation IRCCS Policlinico, Milan, Italy.
Genes Chromosomes and Cancer (Impact Factor: 3.84). 06/2009; 48(6):521-31. DOI: 10.1002/gcc.20660
Source: PubMed

ABSTRACT It is thought that altered microRNA (miRNA) expression due to various mechanisms plays a critical role in the pathogenesis of most human cancers. Notably, about half of the known miRNAs are intragenic and frequently coexpressed with their host genes. To date there is little evidence concerning miRNA expression in multiple myeloma (MM). In an attempt to provide insights into miRNA deregulation in MM, we profiled global miRNA expression in a panel of molecularly well-characterized human myeloma cell lines (HMCLs) using high-resolution microarrays, and then used integrative analyses to identify altered patterns correlated with DNA copy number (CN) or gene expression profiles. We identified 16 miRNAs mapped to chromosomal regions frequently involved in numerical imbalances in MM, whose expression significantly correlated with the CN of the corresponding miRNA genes; among these, miR-22 expression was also affected by chromosome arm 17p loss in a representative panel of primary MM tumors. The expression of 32 intronic miRNAs significantly correlated with that of their host transcripts, some of which were highly deregulated in MM patients. The expression of some of the miRNAs was validated by quantitative RT-PCR. Finally, a number of the identified miRNAs have previously been reported to play important roles in tumorigenesis. Overall, our data highlight that genomic alterations may significantly affect miRNA expression in HMCLs and demonstrate a frequent coexpression of intronic miRNAs with their host genes that may have a pathogenetic relevance in plasma cell transformation.

Download full-text


Available from: Luca Agnelli, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evidence that links classical protein-coding proto-oncogenes and tumor suppressors, such as MYC, RAS, P53, and RB, to carcinogenesis is indisputable. Multiple lines of proof show how random somatic genomic alteration of such genes (e.g., mutation, deletion, or amplification), followed by selection and clonal expansion, forms the main molecular basis of tumor development. Many important cancer genes were discovered using low-throughput approaches in the pre-genomic era, and this knowledge is today solidified and expanded upon by modern genome-scale methodologies. In several recent studies, non-coding RNAs (ncRNAs), such as microRNAs and long ncRNAs (lncRNAs), have been shown to contribute to tumor development. However, in comparison with coding cancer genes, the genomic (DNA-level) evidence is sparse for ncRNAs. The coding proto-oncogenes and tumor suppressors that we know of today are major molecular hubs in both normal and malignant cells. The search for ncRNAs with tumor driver or suppressor roles therefore holds the additional promise of pinpointing important, biologically active, ncRNAs in a vast and largely uncharacterized non-coding transcriptome. Here, we assess the available DNA-level data that links non-coding genes to tumor development. We further consider historical, methodological, and biological aspects, and discuss future prospects of ncRNAs in cancer.
    Frontiers in Genetics 09/2012; 3:170. DOI:10.3389/fgene.2012.00170
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are short non-coding RNAs that play critical roles in numerous cellular processes through post-transcriptional regulating functions. The aberrant role of miRNAs has been reported in a number of hematopoietic malignancies including multiple myeloma (MM). In this review we summarize the current knowledge on roles of miRNAs in the pathogenesis of MM.
    Frontiers in Genetics 01/2011; 2:22. DOI:10.3389/fgene.2011.00022
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, microRNAs in cancer development have attracted much attention, but their roles in tumorigenesis are still largely unknown. In this study, a functional role of miR-22 in hepatocellular carcinoma (HCC) development has been identified. Quantitative real-time PCR was used to determine the level of miR-22 transcript in HCC clinical samples, and its correlation with disease-free survival was determined using Kaplan-Meier method. Restoration of miR-22 expression was carried out in HCC cell lines to assess its influence on HCC cell proliferation and tumourigenicity. In the 160 paired HCC tissue samples, miR-22 expression was downregulated in HCC, and low miR-22 expression in HCC was predictive of poor survival in HCC patients. Functional studies indicated that ectopic expression of miR-22 significantly inhibits HCC cell proliferation and tumourigenicity. Furthermore, histone deacetylase 4 (HDAC4), known to have critical roles in cancer development, was proved to be directly targeted and regulated by miR-22. Furthermore, HDAC4 was upregulated in miR-22-downregulated HCC tissues, suggesting that downregulation of miR-22 might participate in HCC carcinogenesis and progression through potentiation of HDAC4 expression. In addition, cell proliferation was also suppressed by knockdown of HDAC4 or treatment with HDAC inhibitor trichostatin A in HCC cell lines. miR-22, downregulated in HCC, has an anti-proliferative effect on HCC cells both in vitro and in vivo. Furthermore, miR-22 may have considerable potential in identification of the prognosis and application of cancer therapy for HCC patients.
    British Journal of Cancer 10/2010; 103(8):1215-20. DOI:10.1038/sj.bjc.6605895 · 4.82 Impact Factor