Human olfaction: from genomic variation to phenotypic diversity.

Department of Molecular Genetics and the Crown Human Genome Center, Weizmann Institute of Science, Rehovot 76100, Israel.
Trends in Genetics (Impact Factor: 11.6). 05/2009; 25(4):178-84. DOI: 10.1016/j.tig.2009.02.002
Source: PubMed

ABSTRACT The sense of smell is a complex molecular device, encompassing several hundred olfactory receptor proteins (ORs). These receptors, encoded by the largest human gene superfamily, integrate odorant signals into an accurate 'odor image' in the brain. Widespread phenotypic diversity in human olfaction is, in part, attributable to prevalent genetic variation in OR genes, owing to copy number variation, deletion alleles and deleterious single nucleotide polymorphisms. The development of new genomic tools, including next generation sequencing and CNV assays, provides opportunities to characterize the genetic variations of this system. The advent of large-scale functional screens of expressed ORs, combined with genetic association studies, has the potential to link variations in ORs to human chemosensory phenotypes. This promises to provide a genome-wide view of human olfaction, resulting in a deeper understanding of personalized odor coding, with the potential to decipher flavor and fragrance preferences.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Animals often use different sensory systems to assess different sexually selected signals from potential mates. However, the relative importance of different signals on mate choice is not well understood in many animal species. In this study, we examined the relative importance of male olfactory and visual cues on female preference in the guppy Poecilia reticulata. We used digitally modified male images to standardize visual stimuli. We found that, regardless of whether females were presented without male visual stimuli or with identical male visual stimuli, they preferred stimuli with the odor of males to those without. However, when females were allowed to choose between dull male visual stimuli with male odor, and brightly colored male visual stimuli without male odor, there was no clear preference for either. Some females preferred the dull male visual stimuli with male odor, whereas some other females preferred the brightly colored male visual stimuli without male odor. These results indicate that the relative importance of olfactory and visual cues in female mate preference varied between individuals.
    Journal of Ethology 09/2014; 32(3):137-143. DOI:10.1007/s10164-014-0402-8 · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major contribution to the genome variability among individuals comes from deletions and duplications - collectively termed copy number variations (CNVs) - which alter the diploid status of DNA. These alterations may have no phenotypic effect, account for adaptive traits or can underlie disease. We have compiled published high-quality data on healthy individuals of various ethnicities to construct an updated CNV map of the human genome. Depending on the level of stringency of the map, we estimated that 4.8-9.5% of the genome contributes to CNV and found approximately 100 genes that can be completely deleted without producing apparent phenotypic consequences. This map will aid the interpretation of new CNV findings for both clinical and research applications.
    Nature Reviews Genetics 02/2015; 16(3). DOI:10.1038/nrg3871 · 39.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article is part of a Special Issue "Chemosignals and Reproduction" Across phyla, chemosensory communication is crucial for mediating a variety of social behaviors, which form the basis for ontogenetic and phylogenetic survival. In the present paper, evidence on chemosensory communication in humans, with special reference to reproduction and survival, will be presented. First, the impact of chemosignals on human reproduction will be reviewed. Work will be presented, showing how chemosensory signals are involved in mate choice and partnership formation by communicating attractiveness and facilitating a partner selection, which is of evolutionary advantage, and furthermore providing information about the level of sexual hormones. In addition to direct effects on phylogenetic survival, chemosignals indirectly aid reproductive success by fostering harm protection. Results will be presented, showing that chemosensory communication aids the emotional bond between mother and child, which in turn motivates parental caretaking and protection, leading to infant survival. Moreover, the likelihood of group survival can be increased through the use of stress-related chemosignals. Stress-related chemosignals induce a stress-related physiology in the perceiver, thereby priming a fight-flight-response, which is necessary for an optimum adaption to environmental harm. Finally, effects of sexual orientation on chemosensory communication will be discussed in terms of their putative role in stabilizing social groups, which might indirectly provide harm protection and foster survival. An integrative model of the presented data will be introduced. In conclusion, an outlook, focusing on the involvement of chemosensory communication in human social behavior and illustrating a novel approach to the significance of chemosensory signals in human survival, will be given. Copyright © 2014 Elsevier Inc. All rights reserved.
    Hormones and Behavior 02/2015; 68C:134-144. DOI:10.1016/j.yhbeh.2014.10.001 · 4.51 Impact Factor

Full-text (2 Sources)

Available from
Aug 15, 2014