Article

Selection Pressure From Neutralizing Antibodies Drives Sequence Evolution During Acute Infection With Hepatitis C Virus

Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.
Gastroenterology (Impact Factor: 13.93). 04/2009; 136(7):2377-86. DOI: 10.1053/j.gastro.2009.02.080
Source: PubMed

ABSTRACT Despite recent characterization of hepatitis C virus-specific neutralizing antibodies, it is not clear to what extent immune pressure from neutralizing antibodies drives viral sequence evolution in vivo. This lack of understanding is particularly evident in acute infection, the phase when elimination or persistence of viral replication is determined and during which the importance of the humoral immune response has been largely discounted.
We analyzed envelope glycoprotein sequence evolution and neutralization of sequential autologous hepatitis C virus pseudoparticles in 8 individuals throughout acute infection.
Amino acid substitutions occurred throughout the envelope genes, primarily within the hypervariable region 1 of E2. When individualized pseudoparticles expressing sequential envelope sequences were used to measure neutralization by autologous sera, antibodies neutralizing earlier sequence variants were detected at earlier time points than antibodies neutralizing later variants, indicating clearance and evolution of viral variants in response to pressure from neutralizing antibodies. To demonstrate the effects of amino acid substitution on neutralization, site-directed mutagenesis of a pseudoparticle envelope sequence revealed amino acid substitutions in hypervariable region 1 that were responsible for a dramatic decrease in neutralization sensitivity over time. In addition, high-titer neutralizing antibodies peaked at the time of viral clearance in all spontaneous resolvers, whereas chronically evolving subjects displayed low-titer or absent neutralizing antibodies throughout early acute infection.
These findings indicate that, during acute hepatitis C virus infection in vivo, virus-specific neutralizing antibodies drive sequence evolution and, in some individuals, play a role in determining the outcome of infection.

0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) remains a global problem, despite advances in treatment. The low cost and high benefit of vaccines have made them the backbone of modern public health strategies, and the fight against HCV will not be won without an effective vaccine. Achievement of this goal will benefit from a robust understanding of virus-host interactions and protective immunity in HCV infection. In this review, we summarize recent findings on HCV-specific antibody responses associated with chronic and spontaneously resolving human infection. In addition, we discuss specific epitopes within HCV's envelope glycoproteins that are targeted by neutralizing antibodies. Understanding what prompts or prevents a successful immune response leading to viral clearance or persistence is essential to designing a successful vaccine.
    Frontiers in Immunology 11/2014; 5:550. DOI:10.3389/fimmu.2014.00550
  • [Show abstract] [Hide abstract]
    ABSTRACT: For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development.
    Journal of Clinical Investigation 12/2014; 125(1). DOI:10.1172/JCI78794 · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, we are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from [Formula: see text] infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.
    PLoS Computational Biology 11/2014; 10(11):e1003934. DOI:10.1371/journal.pcbi.1003934 · 4.83 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
Dec 22, 2014