Article

Airway and Lung Pathology Due to Mucosal Surface Dehydration in β-Epithelial Na+ Channel-Overexpressing Mice: Role of TNF-α and IL-4Rα Signaling, Influence of Neonatal Development, and Limited Efficacy of Glucocorticoid Treatment

Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599, USA.
The Journal of Immunology (Impact Factor: 5.36). 05/2009; 182(7):4357-67. DOI: 10.4049/jimmunol.0802557
Source: PubMed

ABSTRACT Overexpression of the epithelial Na(+) channel beta subunit (Scnn1b gene, betaENaC protein) in transgenic (Tg) mouse airways dehydrates mucosal surfaces, producing mucus obstruction, inflammation, and neonatal mortality. Airway inflammation includes macrophage activation, neutrophil and eosinophil recruitment, and elevated KC, TNF-alpha, and chitinase levels. These changes recapitulate aspects of complex human obstructive airway diseases, but their molecular mechanisms are poorly understood. We used genetic and pharmacologic approaches to identify pathways relevant to the development of Scnn1b-Tg mouse lung pathology. Genetic deletion of TNF-alpha or its receptor, TNFR1, had no measurable effect on the phenotype. Deletion of IL-4Ralpha abolished transient mucous secretory cell (MuSC) abundance and eosinophilia normally observed in neonatal wild-type mice. Similarly, IL-4Ralpha deficiency decreased MuSC and eosinophils in neonatal Scnn1b-Tg mice, which correlated with improved neonatal survival. However, chronic lung pathology in adult Scnn1b-Tg mice was not affected by IL-4Ralpha status. Prednisolone treatment ablated eosinophilia and MuSC in adult Scnn1b-Tg mice, but did not decrease mucus plugging or neutrophilia. These studies demonstrate that: 1) normal neonatal mouse airway development entails an IL-4Ralpha-dependent, transient abundance of MuSC and eosinophils; 2) absence of IL-4Ralpha improved neonatal survival of Scnn1b-Tg mice, likely reflecting decreased formation of asphyxiating mucus plugs; and 3) in Scnn1b-Tg mice, neutrophilia, mucus obstruction, and airspace enlargement are IL-4Ralpha- and TNF-alpha-independent, and only MuSC and eosinophilia are sensitive to glucocorticoids. Thus, manipulation of multiple pathways will likely be required to treat the complex pathogenesis caused by airway surface dehydration.

Download full-text

Full-text

Available from: Marcus A Mall, Nov 24, 2014
0 Followers
 · 
440 Views
  • Source
    • "Macrophage inflammatory protein 2 (MIP-2), on the other hand, is the murine analog of interleukin-8 (IL-8) which is the neutrophil chemotactic factor in human beings. Neutrophils play an important role in the pathogenesis of IPF [40]. It is known that Type 2 cells have a stronger resistance against pathological insults. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim The purpose of the study was to determine the lung toxicity caused by amiodarone (AD) and bleomycin (BLM) in rats, by means of Tc-99m HMPAO lung scintigraphy. Methods Thirty albino rats were randomly divided into five groups. After AD or BLM was dissolved with isotonic saline (SF), a 0.5 ml solution was applied to the right bronchus via a catheter. Group 1 (n = 5 rats) received a single dose of AD, group 2 (n = 5) received two doses of AD, group 3 (n = 9) received BLM, group 4 (n = 3) received hydrochloric acid (HCl), and group 5 (n = 8) received SF. Rats in groups 1, 2, 3 and 5 were given 37 MBq Tc-99m HMPAO from the tail vein on days 7, 14, 21 and 28, and at 4 and 24 h in group 4. Static images of 10 min duration were obtained at 30 and 60 min by a double-headed gamma camera (Infinia, GE, Tirat Hacermel, Israel) on 256 × 256 matrix. Regular regions of interests were drawn over the right lung (RL), left lung (LL) and the liver (Li), and lung/liver (L/Li) ratios were calculated. After the scintigraphic imaging procedures were completed, rats were killed. Lung tissues were evaluated on a scale of (+) to (+++++) for edema, alveolar structural integrity and infiltration by inflammatory cells. Results Groups 2 and 3 showed statistically significant differences in RL/Li and LL/Li ratios, whereby RL/Li was higher than LL/Li (p < 0.05). There were no significant differences in RL/Li and LL/Li ratios in group 5 (p > 0.05). In histopathological examination, minimal damage or artifacts were observed in group 5. In group 4, almost all pathological findings were present in the right lung. Statistically significant (p < 0.01) histological differences were found when groups 1 and 5 were compared. More significant (p < 0.001) pathological effects were noted when groups 2 and 3 were compared to both groups 5 and 1. Injury was more prominent in the lung tissues of the control rats that were given HCl. Increased RL/Li ratios and histopathological findings were consistent. Conclusion Tc-99m HMPAO lung scan are found to be useful in the identification of patients with lung toxicity. The simplicity of the procedure and lower radiation exposure are the advantages of Tc-99m HMPAO lung scan.
    Annals of Nuclear Medicine 04/2013; 27(7). DOI:10.1007/s12149-013-0722-8 · 1.51 Impact Factor
  • Source
    • "We did note some adverse impact on alveolarization of the vehicle used (10% DMSO) to dissolve the agonist. We used the dose noted in studies conducted with adult mice [31], which probably led to the adverse impact on alveolarization. A lower concentration of DMSO would be preferred for future studies, as DMSO has been used safely in hyperoxia-exposed neonatal mice [32,33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The role and mechanism of action of MIF in bronchopulmonary dysplasia (BPD) are not known. We hypothesized that increased MIF signaling would ameliorate the pulmonary phenotype of BPD in the mouse lung. Methods We studied newborn wild type (WT), MIF knockout (MIFKO), and lung MIF transgenic (MIFTG) mice in room air and a BPD model, and examined the effects of administering a small molecule MIF agonist and antagonist. Lung morphometry was performed and mRNA and protein expression of vascular mediators were analyzed. Results The pulmonary phenotype of MIFKO and MIFTG mice lungs in room air (RA) and BPD model were comparable to the WT-BPD mice at postnatal (PN) day 14. Vascular endothelial growth factor (VEGF)-A, -R1 and Angiopoietin (Ang)1 mRNA were decreased, and Ang2 increased in the WT-BPD, MIFKO-RA, MIFKO-BPD, MIFTG-RA and MIFTG-BPD mice lungs, compared to appropriate controls. The protein expression of Ang1 in the MIFKO-RA was similar to WT-RA, but decreased in MIFTG-RA, and decreased in all the BPD groups. Ang2 was increased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. Tie2 was increased in WT-BPD compared to WT-RA, but decreased in MIFKO- and MIFTG- RA and BPD groups. VEGFR1 was uniformly decreased in MIFKO-RA, MIFTG-RA and in all 3 BPD groups. VEGF-A had a similar expression across all RA and BPD groups. There was partial recovery of the pulmonary phenotype in the WT-BPD model treated with the MIF agonist, and in the MIFTG mice treated with the MIF antagonist. Conclusions These data point to the careful regulatory balance exerted by MIF in the developing lung and response to hyperoxia and support the potential therapeutic value of small molecule MIF modulation in BPD.
    Respiratory research 02/2013; 14(1):27. DOI:10.1186/1465-9921-14-27 · 3.38 Impact Factor
  • Source
    • "Because lung fluid volume is central to the pathogenesis of lung injury (reviewed in [39]), we believe that upregulation of sodium reabsorption in the lung initially compounds defects of the alcohol lung. Indeed, airway-targeted overexpression of the β-ENaC subunit causes airway surface dehydration, mucus stasis, and inflammation, which favors the growth of bacteria even in germ-free conditions [40–43]. In a related study, albeit distinct study using upper airway Calu-3 cells, Raju and Wang [44] reported that ethanol exposure (25–100 mM) suppresses chloride secretion by CFTR. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar to effects of alcohol on the heart, liver, and brain, the effects of ethanol (EtOH) on lung injury are preventable. Unlike other vital organ systems, however, the lethal effects of alcohol on the lung are underappreciated, perhaps because there are no signs of overt pulmonary disorder until a secondary insult, such as a bacterial infection or injury, occurs in the lung. This paper provides overview of the complex changes in the alveolar environment known to occur following both chronic and acute alcohol exposures. Contemporary animal and cell culture models for alcohol-induced lung dysfunction are discussed, with emphasis on the effect of alcohol on transepithelial transport processes, namely, epithelial sodium channel activity (ENaC). The cascading effect of tissue and phagocytic Nadph oxidase (Nox) may be triggered by ethanol exposure, and as such, alcohol ingestion and exposure lead to a prooxidative environment; thus impacting alveolar macrophage (AM) function and oxidative stress. A better understanding of how alcohol changes the landscape of the alveolar epithelium can lead to improvements in treating acute respiratory distress syndrome (ARDS) for which hospitalized alcoholics are at an increased risk.
    01/2013; 2013:470217. DOI:10.1155/2013/470217
Show more