Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury.

Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA.
Circulation Research (Impact Factor: 11.09). 04/2009; 104(8):1012-20. DOI: 10.1161/CIRCRESAHA.108.189811
Source: PubMed

ABSTRACT Ischemic heart disease, which remains the leading cause of morbidity and mortality in the Western world, is invariably characterized by impaired cardiac function and disturbed Ca(2+) homeostasis. Because enhanced inhibitor-1 (I-1) activity has been suggested to preserve Ca(2+) cycling, we sought to define whether increases in I-1 activity in the adult heart may ameliorate contractile dysfunction and cellular injury in the face of an ischemic insult. To this end, we generated an inducible transgenic mouse model that enabled temporally controlled expression of active I-1 (T35D). Active I-1 expression in the adult heart elicited significant enhancement of contractile function, associated with preferential phospholamban phosphorylation and enhanced sarcoplasmic reticulum Ca(2+)-transport. Further phosphoproteomic analysis revealed alterations in proteins associated with energy production and protein synthesis, possibly to support the increased metabolic demands of the hyperdynamic hearts. Importantly, on ischemia/reperfusion-induced injury, active I-1 expression augmented contractile function and recovery. Further examination revealed that the infarct region and apoptotic as well as necrotic injuries were significantly attenuated by enhanced I-1 activity. These cardioprotective effects were associated with suppression of the endoplasmic reticulum stress response. The present findings indicate that increased I-1 activity in the adult heart enhances Ca(2+) cycling and improves mechanical recovery, as well as cell survival after an ischemic insult, suggesting that active I-1 may represent a potential therapeutic strategy in myocardial infarction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoproteomic analysis seeks to determine the overall level of protein phosphorylation, as a result of kinase and phosphatase activity, and determine the identity of proteins which are phosphorylated and the amino acid residues which hold the phosphate group. The methodologies available have improved with increased research efforts; however, the most commonly followed procedure is to enrich for phosphoproteins or peptides and undertake tandem mass spectrometric analysis focusing on specific signature losses which represent phosphopeptides. There have been many advances in this area and these are detailed both in relation to available protocols for phosphoproteomic analysis and to the widening range of biomedical fields in which such approaches are being commonly applied.
    Advances in Protein Chemistry and Structural Biology 01/2014; 95:25-69. · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adipocyte-secreted hormone adiponectin (APN) exerts protective effects on the heart under stress conditions. Recent studies have demonstrated that APN induces a marked Ca(2+) influx in skeletal muscle. However, whether APN modulates [Ca(2+)]i activity, especially [Ca(2+)]i transients in cardiomyocytes, is still unknown. This study was designed to determine whether APN modulates [Ca(2+)]i transients in cardiomyocytes. Adult male wild-type (WT) and APN knockout (APN KO) mice were subjected to myocardial ischemia/reperfusion (I/R, 30min/30min) injury. CaMKII-PLB phosphorylation and SR Ca(2+)-ATPase (SERCA2) activity were downregulated in I/R hearts of WT mice and further decreased in those of APN KO mice. Both the globular domain of APN and full-length APN significantly reversed the decrease in CaMKII-PLB phosphorylation and SERCA2 activity in WT and APN KO mice. Interestingly, compared with WT littermates, single myocytes isolated from APN KO mice had remarkably decreased [Ca(2+)]i transients, cell shortening, and a prolonged Ca(2+) decay rate. Further examination revealed that APN enhances SERCA2 activity via CaMKII-PLB signaling. In in vivo and in vitro experiments, both APN receptor 1/2 and S1P were necessary for the APN-stimulated CaMKII-PLB-SERCA2 activation. In addition, S1P activated CaMKII-PLB signaling in neonatal cardiomyocytes in a dose dependent manner and improved [Ca(2+)]i transients in APN KO myocytes via the S1P receptor (S1PR1/3). Further in vivo experiments revealed that pharmacological inhibition of S1PR1/3 and SERCA2 siRNA suppressed APN-mediated cardioprotection during I/R. These data demonstrate that S1P is a novel regulator of SERCA2 that activates CaMKII-PLB signaling and mediates APN-induced cardioprotection.
    Journal of Molecular and Cellular Cardiology 05/2014; · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phospholamban (PLN) is a phosphoprotein in cardiac sarcoplasmic reticulum (SR) that is a reversible regulator of the Ca(2) (+)-ATPase (SERCA2a) activity and cardiac contractility. Dephosphorylated PLN inhibits SERCA2a and PLN phosphorylation, at either Ser(16) by PKA or Thr(17) by Ca(2) (+)-calmodulin-dependent protein kinase (CaMKII), reverses this inhibition. Through this mechanism, PLN is a key modulator of SR Ca(2) (+) uptake, Ca(2) (+) load, contractility, and relaxation. PLN phosphorylation is also the main determinant of β1-adrenergic responses in the heart. Although phosphorylation of Thr(17) by CaMKII contributes to this effect, its role is subordinate to the PKA-dependent increase in cytosolic Ca(2) (+), necessary to activate CaMKII. Furthermore, the effects of PLN and its phosphorylation on cardiac function are subject to additional regulation by its interacting partners, the anti-apoptotic HAX-1 protein and Gm or the anchoring unit of protein phosphatase 1. Regulation of PLN activity by this multimeric complex becomes even more important in pathological conditions, characterized by aberrant Ca(2) (+)-cycling. In this scenario, CaMKII-dependent PLN phosphorylation has been associated with protective effects in both acidosis and ischemia/reperfusion. However, the beneficial effects of increasing SR Ca(2) (+) uptake through PLN phosphorylation may be lost or even become deleterious, when these occur in association with alterations in SR Ca(2) (+) leak. Moreover, a major characteristic in human and experimental heart failure (HF) is depressed SR Ca(2) (+) uptake, associated with decreased SERCA2a levels and dephosphorylation of PLN, leading to decreased SR Ca(2) (+) load and impaired contractility. Thus, the strategy of altering SERCA2a and/or PLN levels or activity to restore perturbed SR Ca(2) (+) uptake is a potential therapeutic tool for HF treatment. We will review here the role of CaMKII-dependent phosphorylation of PLN at Thr(17) on cardiac function under physiological and pathological conditions.
    Frontiers in Pharmacology 01/2014; 5:5.

Full-text (2 Sources)

Available from
May 30, 2014