Digital PCR provides sensitive and absolute calibration for high throughput sequencing

Department of Bioengineering at Stanford University and Howard Hughes Medical Institute, Stanford, CA 94305, USA.
BMC Genomics (Impact Factor: 4.04). 04/2009; 10:116. DOI: 10.1186/1471-2164-10-116
Source: PubMed

ABSTRACT Next-generation DNA sequencing on the 454, Solexa, and SOLiD platforms requires absolute calibration of the number of molecules to be sequenced. This requirement has two unfavorable consequences. First, large amounts of sample-typically micrograms-are needed for library preparation, thereby limiting the scope of samples which can be sequenced. For many applications, including metagenomics and the sequencing of ancient, forensic, and clinical samples, the quantity of input DNA can be critically limiting. Second, each library requires a titration sequencing run, thereby increasing the cost and lowering the throughput of sequencing.
We demonstrate the use of digital PCR to accurately quantify 454 and Solexa sequencing libraries, enabling the preparation of sequencing libraries from nanogram quantities of input material while eliminating costly and time-consuming titration runs of the sequencer. We successfully sequenced low-nanogram scale bacterial and mammalian DNA samples on the 454 FLX and Solexa DNA sequencing platforms. This study is the first to definitively demonstrate the successful sequencing of picogram quantities of input DNA on the 454 platform, reducing the sample requirement more than 1000-fold without pre-amplification and the associated bias and reduction in library depth.
The digital PCR assay allows absolute quantification of sequencing libraries, eliminates uncertainties associated with the construction and application of standard curves to PCR-based quantification, and with a coefficient of variation close to 10%, is sufficiently precise to enable direct sequencing without titration runs.

Download full-text


Available from: Richard Allen White III, Jun 28, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry's needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards.
    Frontiers in Microbiology 02/2014; 5:16. DOI:10.3389/fmicb.2014.00016 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a multiplexed LNA-based Taqman assay, RT-digital PCR (RT-dPCR) was performed in a prefabricated microfluidic device that monitored absolute viral load in native and immortalized cell lines, overall precision of detection, and the absolute detection limit of an occult RNA virus GB Virus Type C (GBV-C). RT-dPCR had on average a 10% lower overall coefficient of variation (CV, a measurement of precision) for viral load testing than RT-qPCR and had a higher overall detection limit, able to quantify as low as three 5'-UTR molecules of GBV-C genome. Two commercial high-yield in vitro transcription kits (T7 Ribomax Express by Promega and Ampliscribe T7 Flash by Epicentre) were compared to amplify GBV-C RNA genome with T7-mediated amplification. The Ampliscribe T7 Flash outperformed the T7 Ribomax Express in yield of full-length GBV-C RNA genome. THP-1 cells (a model of monocytic derived cells) were transfected with GBV-C, yielding infectious virions that replicated over a 120h time course and could be infected directly. This study provides the first evidence of GBV-C replication in monocytic derived clonal cells. Thus far, it is the only study using a microfluidic device that measures directly viral load of mammalian RNA virus in a digital format without need for a standard curve.
    Journal of virological methods 01/2012; 179(1):45-50. DOI:10.1016/j.jviromet.2011.09.017 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics. Kalankasvatuksen yhteydessä meriympäristöön vapautuu ravinteita, mikrobeita, raskasmetalleja, pilaantumisenestoaineita sekä antibiootteja. Antibioottien sekä muiden edellä mainittujen aineiden yhteisvaikutuksesta kasvattamoiden lähiympäristössä on havaittu korkeita määriä antibiooteille vastustuskykyisiä bakteereita. Tässä väitöskirjatyössä sovellettiin molekyylimenetelmiä (kvantitatiivinen PCR ja DNA-sekvensointi) selvittämään kalankasvatuksen vaikutusta kasvattamoiden alla olevan sedimentin bakteeriyhteisöihin. Kaikkiaan neljältä kasvattamolta ja neljältä puhtaalta paikalta Itämeressä kerättiin sedimenttinäytteitä. Kahdelta kasvattamolta ja puhtaalta paikalta näytteitä kerättiin neljän peräkkäisen vuoden ajan. Lisäksi työn aikana kehitettiin uudenlainen menetelmä yksittäisten mikrobisolujen genomien monistamiseen ja seulomiseen geneettisten ominaisuuksien perusteella. Tutkimuksessa kasvattamoiden alla olevasta sedimentistä löydettiin kohonneita määriä useita geenejä, jotka antavat vastustuskyvyn tetrasykliini-antibiootille. Kyseisten geenien määrä pysyi jatkuvasti kohonneena jopa kasvattamolla, joka oli lopettanut kaikkien antibioottien käytön jo vuonna 2000; kuusi vuotta ennen tämän tutkimuksen alkua. Samankaltainen ilmiö havaittiin myös elohopealle sietokyvynkyvyn antavalla merA-geenillä, jota löytyi kalankasvatukselle altistuneista sedimenteistä enemmän kuin muista sedimenteistä. Geenien korkea määrä sekä merA-geenin DNA-sekvenssityyppien jakautuminen viittaa siihen, että geenit saattavat tulla kasvattamoiden sedimenttiin kasvatusprosessin seurauksena. Kalankasvatus ei aiheuttanut selvästi tyypillisiä muutoksia sedimentin bakteeriyhteisöissä. Yhteisön rakenteessa tapahtui kuitenkin tietynlaisia muutoksia, jotka olivat yhteydessä viljelyn suuruusluokkaan. Tutkimuksessa saadut tulokset viittaavat siihen, että kalankasvattamoilla perinteisesti käytetyt menetelmät, erityisesti antibioottikierto, ovat tehottomia antibiooteille vastustuskykyisten bakteerien määrän hallitsemiseksi, sillä ne eivät estä kalankasvatusprosessin aikaisemmista vaiheista tulevien resistenssigeenien ja resistenttien bakteereiden päätymistä kasvattamoille. Lisätutkimuksia tarvitaan selvittämään, mikä vaihe kalankasvatusprosessissa saa aikaan antibiooteille vastustuskyvyn antavien geenien leviämisen. Tulosten mukaan merkittävien mikrobiologisten yhteisömuutoksien välttämiseksi sedimentissä kalankasvattamoita ei tulisi perustaa matalaan veteen, missä virtaukset eivät pääse sekoittamaan sedimenttiä. Tutkimuksen yhteydessä kehitetyllä mikrobigenomien monistuksen ja seulomisen mahdollistavalla menetelmällä tulee mahdollisesti olemaan merkittävä vaikutus tuleviin mikrobiekologisiin ja genomisiin tutkimuksiin.