Histone modifications at human enhancers reflect global cell-type-specific gene expression.

Ludwig Institute for Cancer Research, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA.
Nature (Impact Factor: 42.35). 04/2009; 459(7243):108-12. DOI: 10.1038/nature07829
Source: PubMed

ABSTRACT The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic activation and inactivation of gene regulatory DNA produce the expression changes that drive the differentiation of cellular lineages. Identifying regulatory regions active during developmental transitions is necessary to understand how the genome specifies complex developmental programs and how these processes are disrupted in disease. Gene regulatory dynamics are mediated by many factors, including the binding of transcription factors (TFs) and the methylation and acetylation of DNA and histones. Genome-wide maps of TF binding and DNA and histone modifications have been generated for many cellular contexts; however, given the diversity and complexity of animal development, these data cover only a small fraction of the cellular and developmental contexts of interest. Thus, there is a need for methods that use existing epigenetic and functional genomics data to analyze the thousands of contexts that remain uncharacterized. To investigate the utility of histone modification data in the analysis of cellular contexts without such data, I evaluated how well genome-wide H3K27ac and H3K4me1 data collected in different developmental stages, tissues, and species were able to predict experimentally validated heart enhancers active at embryonic day 11.5 (E11.5) in mouse. Using a machine-learning approach to integrate the data from different contexts, I found that E11.5 heart enhancers can often be predicted accurately from data from other contexts, and I quantified the contribution of each data source to the predictions. The utility of each dataset correlated with nearness in developmental time and tissue to the target context: data from late developmental stages and adult heart tissues were most informative for predicting E11.5 enhancers, while marks from stem cells and early developmental stages were less informative. Predictions based on data collected in non-heart tissues and in human hearts were better than random, but worse than using data from mouse hearts. The ability of these algorithms to accurately predict developmental enhancers based on data from related, but distinct, cellular contexts suggests that combining computational models with epigenetic data sampled from relevant contexts may be sufficient to enable functional characterization of many cellular contexts of interest.
    BMC Genomics 02/2015; 16(1):104. DOI:10.1186/s12864-015-1264-3 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with diseases of the colon including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). However, the functional role of many of these SNPs is largely unknown and tissue-specific resources are lacking. Expression quantitative trait loci (eQTL) mapping identifies target genes of disease-associated SNPs. This study provides a comprehensive eQTL map of distal colonic samples obtained from 40 healthy African Americans and demonstrates their relevance for GWAS of colonic diseases. 8.4 million imputed SNPs were tested for their associations with 16,252 expression probes representing 12,363 unique genes. 1,941 significant cis-eQTL, corresponding to 122 independent signals, were identified at a false discovery rate (FDR) of 0.01. Overall, among colon cis-eQTL, there was significant enrichment for GWAS variants for IBD (Crohn's disease [CD] and ulcerative colitis [UC]) and CRC as well as type 2 diabetes and body mass index. ERAP2, ADCY3, INPP5E, UBA7, SFMBT1, NXPE1 and REXO2 were identified as target genes for IBD-associated variants. The CRC-associated eQTL rs3802842 was associated with the expression of C11orf93 (COLCA2). Enrichment of colon eQTL near transcription start sites and for active histone marks was demonstrated, and eQTL with high population differentiation were identified. Through the comprehensive study of eQTL in the human colon, this study identified novel target genes for IBD- and CRC-associated genetic variants. Moreover, bioinformatic characterization of colon eQTL provides a tissue-specific tool to improve understanding of biological differences in diseases between different ethnic groups.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The eukaryotic genomic regulatory elements that control transcription are considered. The review describes the functional anatomy of tissue-specific and housekeeping gene promoters, current methods to predict and to identify the enhancers, and the role insulators play in enhancer–promoter communication and maintenance of the epigenetic status of genome domains. The relationship between the topology of interphase chromatin and the regulation of transcription is outlined. Particular attention is paid to recent data obtained via high-throughput sequencing of primary transcripts and genome-wide analysis of histone modifications
    Molecular Biology 01/2015; 49(2):185-194. DOI:10.1134/S0026893315020119 · 0.64 Impact Factor


Available from
May 19, 2014

Nate Heintzman