Role of Mamalian Chitinases in Asthma

Cell Division and Cancer Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, National University of Singapore, Singapore 117456, Singapore.
International Archives of Allergy and Immunology (Impact Factor: 2.67). 04/2009; 149(4):369-77. DOI: 10.1159/000205583
Source: PubMed


Asthma is a chronic inflammatory disease characterized by airway inflammation, mucus hypersecretion and airway hyperresponsiveness. Mechanisms underlying the pathogenesis of asthma are not fully understood. In recent years, there are mounting evidences demonstrating that mammalian chitinases may play a key role in mediating the T-helper 2 cell-driven inflammatory response that is commonly associated with asthma. Chitinases (e.g., chitotriosidase and acidic mammalian chitinase) are enzymes that degrade chitin, the second most abundant biopolymer that can be found in the cell walls of fungi, microfilarial sheaths of helminths, and exoskeletons of insects and crustaceans. There are also chitinase-like proteins (e.g., YKL-40, Ym1 and Ym2) that lack chitinolytic activity but retain chitin-binding ability. Therefore, chitinases were originally believed to function in host defense against parasitic infections, but the first discovery of their role in inflammatory airway diseases came as a surprise. There is ample evidence to support an association of acidic mammalian chitinase and YKL-40 with allergic bronchial asthma in patients. Our recent studies in a mouse asthma model revealed that anti-inflammatory drugs like corticosteroid and cysteinyl leukotriene receptor antagonist were able to suppress elevated pulmonary levels of mammalian chitinases. Taken together, mammalian chitinases may be useful as biomarkers for asthma. Notwithstanding, large-scale multi-center association studies are required to confirm this hypothesis. Besides, substantially more works using knockout mice, recombinant chitinases and siRNA technology are required to investigate a potential role of chitinases in the pathogenesis of asthma.

Download full-text


Available from: Yu Keung Mok,
52 Reads
  • Source
    • "Moreover, RN was found to correlate with chitinase 3, a common biomarker in asthma. Chitinase 3 did not differentiate the two models of inflammation, although it has been suggested to play a key role in Th2 driven inflammatory response [21]. Similarly, further Th2 associated proteins, IL-5 and IL-13, correlated positively with RN. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Improvements in asthma diagnosis and management require deeper understanding of the heterogeneity of the complex airway inflammation. We hypothesise that differences in the two major inflammatory phenotypes of asthma; eosinophilic and neutrophilic asthma, will be reflected in the lung protein expression profile of murine asthma models and can be delineated using proteomics of bronchoalveolar lavage (BAL). BAL from mice challenged with ovalbumin (OVA/OVA) alone (standard model of asthma, here considered eosinophilic) or OVA in combination with endotoxin (OVA/LPS, model of neutrophilic asthma) was analysed using liquid chromatography coupled to high resolution mass spectrometry, and compared with steroid-treated animals and healthy controls. In addition, conventional inflammatory markers were analysed using multiplexed ELISA (Bio-Plex™ assay). Multivariate statistics was performed on integrative proteomic fingerprints using principal component analysis. Proteomic data were complemented with lung mechanics and BAL cell counts. Several of the analysed proteins displayed significant differences between the controls and either or both of the two models reflecting eosinophilic and neutrophilic asthma. Most of the proteins found with mass spectrometry analysis displayed a considerable increase in neutrophilic asthma compared with the other groups. Conversely, the larger number of the inflammatory markers analysed with Bio-Plex™ analysis were found to be increased in the eosinophilic model. In addition, major inflammation markers were correlated to peripheral airway closure, while commonly used asthma biomarkers only reflect central inflammation. Our data suggest that the commercial markers we are currently relying on to diagnose asthma subtypes are not giving us comprehensive or specific enough information. The analysed protein profiles allowed to discriminate the two models and may add useful information for characterization of different asthma phenotypes.
    BMC Pulmonary Medicine 07/2014; 14(1):110. DOI:10.1186/1471-2466-14-110 · 2.40 Impact Factor
  • Source
    • "Plants produce chitinases to defend themselves from phytopathogenic fungi [5] [6]. In addition to other unknown functions, the mammalian chitinases have been shown to be important biomarkers in asthma [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chitinases are known to hydrolyze chitin polymers into smaller chitooligosaccharides. Chitinase from bacterium Serratia proteamaculans (SpChiD) is found to exhibit both hydrolysis and transglycosylation activities. SpChiD belongs to family 18 of glycosyl hydrolases (GH-18). The recombinant SpChiD was crystallized and its three-dimensional structure was determined at 1.49 Å resolution. The structure was refined to an R-factor of 16.2%. SpChiD consists of 406 amino acid residues. The polypeptide chain of SpChiD adopts a (β/α)8 triosephosphate isomerase (TIM) barrel structure. SpChiD contains three acidic residues, Asp149, Asp151 and Glu153 as part of its catalytic scheme. While both Asp149 and Glu153 adopt single conformations, Asp151 is observed in two conformations. The substrate binding cleft is partially obstructed by a protruding loop, Asn30 - Asp42 causing a considerable reduction in the number of available subsites in the substrate binding site. The positioning of loop, Asn30 - Asp42 appears to be responsible for the transglycosylation activity. The structure determination indicated the presence of sulfone Met89 (SMet89). The sulfone methionine residue is located on the surface of the protein at a site where extra domain is attached in other chitinases. This is the first structure of a single domain chitinase with hydrolytic and transglycosylation activities.
    International Journal of Biochemistry and Molecular Biology 12/2013; 4(4):166-78.
  • Source
    • "Chitinase 3-like 3 (Ym1) is a member of the mammalian chitinase family that also includes Ym2 and BRP-39 in mice, and YKL-40 in humans [34]. Increased expression of these proteins has been associated with inflammatory diseases, in particular with allergic asthma, with the induction of alternative activation of macrophages, and with progression of cancer [35–39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs) interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2) characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.
    Mediators of Inflammation 12/2012; 2012(4):568783. DOI:10.1155/2012/568783 · 3.24 Impact Factor
Show more