CARMA1-mediated NF-kappaB and JNK activation in lymphocytes.

Department of Molecular and Cellular Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA.
Immunological Reviews (Impact Factor: 12.91). 04/2009; 228(1):199-211. DOI: 10.1111/j.1600-065X.2008.00749.x
Source: PubMed

ABSTRACT Activation of transcription factor nuclear factor-kappaB (NF-kappaB) and Jun N-terminal kinase (JNK) play the pivotal roles in regulation of lymphocyte activation and proliferation. Deregulation of these signaling pathways leads to inappropriate immune response and contributes to the development of leukemia/lymphoma. The scaffold protein CARMA1 [caspase-recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1] has a central role in regulation of NF-kappaB and the JNK2/c-Jun complex in both B and T lymphocytes. During last several years, tremendous work has been done to reveal the mechanism by which CARMA1 and its signaling partners, B cell CLL-lymphoma 10 and mucosa-associated lymphoid tissue 1, are activated and mediate NF-kappaB and JNK activation. In this review, we summarize our findings in revealing the roles of CARMA1 in the NF-kappaB and JNK signaling pathways in the context of recent advances in this field.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Lymphomas develop and progress in a specialized tissue microenvironment such as bone marrow as well as secondary lymphoid organs such as lymph node and spleen. The lymphoma microenvironment is characterized by a heterogeneous population of stromal cells, including fibroblastic reticular cells, nurse-like cells, mesenchymal stem cells, follicular dendritic cells, and inflammatory cells such as macrophages, T- and B-cells. These cell populations interact with the lymphoma cells to promote lymphoma growth, survival and drug resistance through multiple mechanisms. Angiogenesis is also recognized as an important factor associated with lymphoma progression. In recent years, we have learned that the interaction between the malignant and non-malignant cells is bidirectional and resembles, at least in part, the pattern seen between non-neoplastic lymphoid cells and the normal microenvironment of lymphoid organs. A summary of the current knowledge of lymphoma microenvironment focusing on the cellular components will be reviewed here. Copyright © 2015. Published by Elsevier Ltd.
    Seminars in Cancer Biology 03/2015; DOI:10.1016/j.semcancer.2015.03.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation DNA sequencing has accelerated the genetic characterization of many human primary immunodeficiency diseases (PIDs). These discoveries can be lifesaving for the affected patients and also provide a unique opportunity to study the effect of specific genes on human immune function. In the past 18 months, a number of independent groups have begun to define novel PIDs caused by defects in the caspase recruitment domain family, member 11 (CARD11)-B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10)-mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1 [CBM]) signalosome complex. The CBM complex forms an essential molecular link between the triggering of cell-surface antigen receptors and nuclear factor κB activation. Germline mutations affecting the CBM complex are now recognized as the cause of novel combined immunodeficiency phenotypes, which all share abnormal nuclear factor κB activation and dysregulated B-cell development as defining features. For this "Current perspectives" article, we have engaged experts in both basic biology and clinical immunology to capture the worldwide experience in recognizing and managing patients with PIDs caused by CBM complex mutations.
    Journal of Allergy and Clinical Immunology 08/2014; 134(2):276-284. DOI:10.1016/j.jaci.2014.06.015
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD8(+) T cells respond to TCR stimulation by producing proinflammatory cytokines, and destroying infected or malignant cells through the production and release of cytotoxic granules. Scaffold protein Discs large homolog 1 (Dlg1) specifies TCR-dependent functions by channeling proximal signals toward the activation of p38-dependent proinflammatory cytokine gene expression and/or p38-independent cytotoxic granule release. Two Dlg1 variants are expressed in CD8(+) T cells via alternative splicing, Dlg1AB and Dlg1B, which have differing abilities coordinate TCR-dependent functions. Although both variants facilitate p38-independent cytotoxicity, only Dlg1AB coordinates p38-dependent proinflammatory cytokine expression. In this study, we identify TCR-induced Dlg1 tyrosine phosphorylation as a key regulatory step required for Dlg1AB-mediated p38-dependent functions, including proinflammatory cytokine expression. We find that Dlg1AB but not Dlg1B is tyrosine phosphorylated by proximal tyrosine kinase Lck in response to TCR stimulation. Furthermore, we identify Dlg1 tyrosine 222 (Y222) as a major site of Dlg1 phosphorylation required for TCR-triggered p38 activation and NFAT-dependent expression of proinflammatory cytokines, but not for p38-independent cytotoxicity. Taken together, our data support a model where TCR-induced phosphorylation of Dlg1 Y222 is a key point of control that endows Dlg1AB with the ability to coordinate p38 activation and proinflammatory cytokine production. We propose blocking Dlg1AB phosphorylation as a novel therapeutic target to specifically block proinflammatory cytokine production but not cytotoxicity.
    The Journal of Immunology 08/2014; 193(6). DOI:10.4049/jimmunol.1401196

Full-text (2 Sources)

Available from
May 22, 2014