Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk.

National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Immunological Reviews (Impact Factor: 12.91). 04/2009; 228(1):93-114. DOI: 10.1111/j.1600-065X.2008.00757.x
Source: PubMed

ABSTRACT The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of non-receptor tyrosine kinases consists of five members: Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Although their functions are probably best understood in antigen receptor signaling, where they participate in the phosphorylation and regulation of phospholipase C-gamma (PLC-gamma), it is now appreciated that these kinases contribute to signaling from many receptors and that they participate in multiple downstream pathways, including regulation of the actin cytoskeleton. In T cells, three Tec kinases are expressed, Itk, Rlk/Txk, and Tec. Itk is expressed at highest amounts and plays the major role in regulating signaling from the T-cell receptor. Recent studies provide evidence that these kinases contribute to multiple aspects of T-cell biology and have unique roles in T-cell development that have revealed new insight into the regulation of conventional and innate T-cell development. We review new findings on the Tec kinases with a focus on their roles in T-cell development and mature T-cell differentiation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemophagocytic lymphohistiocytosis (HLH) is characterized by uncontrolled immune activation and is traditionally associated with inherited gene defects or acquired causes. In addition to abnormalities in cytotoxic granules and lysosomes, various primary immune deficiency disorders (PID) have been identified among patients suffering from HLH. Our purpose was to better characterize and detail the association between PID and HLH. We found that HLH occurs infrequently among patients with PID, particularly those suffering from abnormalities that impair T cell function. The prognosis of patients suffering from PID and HLH is poor, emphasizing the need for rapid clinical and genetic diagnosis of the PID as well as initiation of appropriate management of the HLH, including allogeneic hematopoietic stem cell transplantations. The association of HLH and PID implicates abnormal T cell function as an important factor in HLH development. It also suggests that the partition of HLH into genetic versus acquired forms might be misleading.
    Clinical Immunology 09/2014; · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with underlying immunodeficiency, Epstein-Barr virus (EBV) may lead to severe immune dysregulation manifesting as fatal mononucleosis, lymphoma, lymphoproliferative disease (LPD), lymphomatoid granulomatosis, hemophagocytic lymphohistiocytosis (HLH) and dysgammaglobulinemia. Several newly discovered primary immunodeficiencies (STK4, CD27, MAGT1, CORO1A) have been described in recent years; our group and collaborators were able to reveal the pathogenicity of mutations in the Interleukin-2-inducible T-cell Kinase (ITK) in a cohort of nine patients with most patients presenting with massive EBV B-cell lymphoproliferation. This review summarizes the clinical and immunological findings in these patients. Moreover, we describe the functional consequences of the mutations and draw comparisons with the extensively investigated function of ITK in vitro and in the murine model.
    Journal of Clinical Immunology 10/2014; · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lymphatic vasculature plays a critical role in a number of disease conditions of increasing prevalence, such as autoimmune disorders, obesity, blood vascular diseases, and cancer metastases. Yet, unlike the blood vasculature, the tools available to interrogate the molecular basis of lymphatic dysfunction/disease have been lacking. More recently, investigators have reported that dysregulation of the PI3K pathway is involved in syndromic human diseases that involve abnormal lymphatic vasculatures, but there have been few compelling results that show the direct association of this molecular pathway with lymphatic dysfunction in humans. Using near-infrared fluorescence lymphatic imaging (NIRFLI) to phenotype and next generation sequencing (NGS) for unbiased genetic discovery in a family with non-syndromic lymphatic disease, we discovered a rare, novel mutation in INPPL1 that encodes the protein SHIP2, which is a negative regulator of the PI3K pathway, to be associated with lymphatic dysfunction in the family. In vitro interrogation shows that SHIP2 is directly associated with impairment of normal lymphatic endothelial cell (LEC) behavior and that SHIP2 associates with receptors that are associated in lymphedema, implicating its direct involvement in the lymphatic vasculature.
    PLoS ONE 11/2014; 9(11):e112548. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014

Ana Venegas