Article

Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans

Laboratory of Nutrition and Metabolism, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil. Electronic address: .
Nutrition (Impact Factor: 3.05). 06/2013; 29(9). DOI: 10.1016/j.nut.2013.03.003
Source: PubMed

ABSTRACT The goal of this study was to evaluate the effects of creatine (Cr) supplementation on oxidative stress and inflammation markers after acute repeated-sprint exercise in humans.
Twenty-five players under age 20 y were randomly assigned to two groups: Cr supplemented and placebo. Double-blind controlled supplementation was performed using Cr (0.3 g/kg) or placebo tablets for 7 d. Before and after 7 d of supplementation, the athletes performed two consecutive Running-based Anaerobic Sprint Tests (RAST). RAST consisted of six 35-m sprint runs at maximum speed with 10 sec rest between them. Blood samples were collected just prior to start of test (pre), just after the completion (0 h), and 1 h after completion.
Average, maximum, and minimum power values were greater in the Cr-supplemented group compared with placebo (P < 0.05). There were significant increases (P < 0.05) in plasma tumor necrosis factor alpha (TNF-α) and C-reactive protein (CRP) up to 1 h after acute sprint exercise in the placebo-supplemented group. Malondialdehyde, lactate dehydrogenase (LDH), catalase, and superoxide dismutase enzymes also were increased after exercise in both groups. Red blood cell glutathione was lower after exercise in both groups. Cr supplementation reversed the increase in TNF-α and CRP as well as LDH induced by acute exercise. Controversially, Cr supplementation did not inhibit the rise in oxidative stress markers. Also, antioxidant enzyme activity was not different between placebo and Cr-supplemented groups.
Cr supplementation inhibited the increase of inflammation markers TNF-α and CRP, but not oxidative stress markers, due to acute exercise.

2 Followers
 · 
204 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural antioxidants can reduce oxidative damage caused by high-intensity resistance training (RT). We investigated the in vitro antioxidant potential of hydroethanolic extract (HEE) from Bowdichia virgilioides on muscular damage and oxidative stress in rats subjected to high-intensity RT. Thirty-two male Wistar rats were divided into four experimental groups: 1) control group (CG), oral administration (P.O.) of vehicle; 2) trained group (TG), vehicle-treated with RT; 3) B. virgilioides untrained group (BVG), treated with B. virgilioides HEE (200 mg/kg P.O.); and 4) trained B. virgilioides group (TBVG), treated with B. virgiliodes HEE (200 mg/kg P.O.). All animals were habituated to the training apparatus for 1 week. CT and TBVG animals were subjected to the training protocol, which consisted of three sets of 10 repetitions with 75% of the load established using the one-repetition maximum, for four weeks. CG and BVG animals were manipulated and fixed to the apparatus three times a week with no load. Treatment with B. virgilioides HEE or vehicle treatment was initiated after 25 days of RT (5 days; one dose per day). At the end of the experiments, plasmatic and gastrocnemius samples from all groups were obtained for the assessment of lipid peroxidation and creatine kinase activity. Compared to TG rats, TBVG rats showed decreases in plasma and gastrocnemius tissue lipid peroxidation by 55.68% (p <0.0001) and 66.61% (p <0.0012), respectively. Further, compared to TG rats TBVG rats showed decreases in plasma and gastrocnemius tissue oxidative stress by 62.83% (p <0.0005) and 54.97% (p <0.0197), respectively. B. virgilioides HEE treatment reduced markers of oxidative stress caused by high-intensity RT. Further, HEE treatment during training significantly reduced the markers of tissue damage.
    Journal of the International Society of Sports Nutrition 12/2014; 11(1):58. DOI:10.1186/s12970-014-0058-3 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Creatine supplementation is known to exert an effect by increasing strength in high intensity and short duration exercises. There is a hypothesis which suggests that creatine supplementation may provide antioxidant activity by scavenging Reactive Oxygen Species. However, the antioxidant effect of creatine supplementation associated with resistance training has not yet been described in the literature. Therefore, we investigated the effect of creatine monohydrate supplementation associated with resistance training over maximum strength gain and oxidative stress in rats. Forty male Wistar rats (250-300 g, 90 days old) were randomly allocated into 4 groups: Sedentary (SED, n = 10), Sedentary + Creatine (SED-Cr, n = 10), Resistance Training (RT, n = 10) and Resistance Training + Creatine (RT-Cr, n = 10). Trained animals were submitted to the RT protocol (4 series of 10-12 repetitions, 90 second interval, 4 times per week, 65 % to 75 % of 1MR, for 8 weeks). In this study, greater strength gain was observed in the SED-Cr, RT and RT-Cr groups compared to the SED group (P < 0.001). The RT-Cr group showed a higher maximum strength gain when compared to other groups (P < 0.001). Creatine supplementation associated with resistance training was able to reduce lipoperoxidation in the plasma (P < 0.05), the heart (P < 0.05), the liver (P < 0.05) and the gastrocnemius (P < 0.05) when compared to control groups. However, the supplementation had no influence on catalase activity (CAT) in the analyzed organs. Only in the heart was the CAT activity higher in the RT-Cr group (P < 0.05). The activity of superoxide dismutase (SOD) was lower in all of the analyzed organs in the SED-Cr group (P < 0.05), while SOD activity was lower in the trained group and sedentary supplemented group (P < 0.05). Creatine was shown to be an effective non-enzymatic antioxidant with supplementation alone and also when it was associated with resistance training in rats.
    Journal of the International Society of Sports Nutrition 03/2014; 11(1):11. DOI:10.1186/1550-2783-11-11 · 1.50 Impact Factor

Full-text

Download
316 Downloads
Available from
May 27, 2014