Enterocyte-Specific Inactivation of SIRT1 Reduces Tumor Load in the APC+/min Mouse Model

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
PLoS ONE (Impact Factor: 3.53). 06/2013; 8(6):e66283. DOI: 10.1371/journal.pone.0066283
Source: PubMed

ABSTRACT SIRT1 is a mammalian NAD(+)-dependent histone deacetylase implicated in metabolism, development, aging and tumorigenesis. Prior studies that examined the effect of enterocyte-specific overexpression and global deletion of SIRT1 on polyp formation in the intestines of APC(+/min) mice, a commonly used model for intestinal tumorigenesis, yielded conflicting results, supporting either tumor-suppressive or tumor-promoting roles for SIRT1, respectively. In order to resolve the controversy emerging from these prior in vivo studies, in the present report we examined the effect of SIRT1 deficiency confined to the intestines, avoiding the systemic perturbations such as growth retardation seen with global SIRT1 deletion. We crossed APC(+/min) mice with mice bearing enterocyte-specific inactivation of SIRT1 and examined polyp development in the progeny. We found that SIRT1-inactivation reduced total polyp surface (9.3 mm(2) vs. 23.3 mm(2), p = 0.01), average polyp size (0.24 mm(2) vs. 0.51 mm(2), p = 0.005) and the number of polyps >0.5 mm in diameter (14 vs. 23, p = 0.04), indicating that SIRT1 affects both the number and size of tumors. Additionally, tumors in SIRT1-deficient mice exhibited markedly increased numbers of cells undergoing apoptosis, suggesting that SIRT1 contributes to tumor growth by enabling survival of tumor cells. Our results indicate that SIRT1 acts as a tumor promoter in the APC(+/min) mouse model of intestinal tumorigenesis.

  • Source
    04/2014; 1(3):183-4.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuins are a class of enzymes with nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylase function. By deacylating various substrate proteins, including histones, transcription factors, and metabolic enzymes, sirtuins regulate various biological processes, such as transcription, cell survival, DNA damage and repair, and longevity. Small molecules that can inhibit sirtuins have been developed and many of them have shown anticancer activity. Here, we summarize the major biological findings that connect sirtuins to cancer and the different types of sirtuin inhibitors developed. Interestingly, biological data suggest that sirtuins have both tumor-suppressing and tumor-promoting roles. However, most pharmacological studies with small-molecule inhibitors suggest that inhibiting sirtuins has anticancer effects. We discuss possible explanations for this discrepancy and suggest possible future directions to further establish sirtuin inhibitors as anticancer agents.
    Future medicinal chemistry 05/2014; 6(8):945-66. DOI:10.4155/fmc.14.44 · 4.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that disruption of the bone morphogenetic protein (BMP) signaling pathway is an important cause of intestinal cancer in human and animal models. Thus, the purpose of this study was to construct a Balb/C model of colorectal polyps. Pregnant mice at 9.5 days gestation were injected via the tail vein with the pSES-Si BMP4 plasmid bearing a fluorochrome (DsRed) reporter, in order to silence the BMP4 gene in the first generation (F1); this group of mice was named the pSES-BMP4 group Intestinal fluorescence was detected at 1-, 4- and 8-week‑old F1 mice, and reverse transcription-polymerase chain reaction (RT-PCR) and western-blotting assays were used to determine changes in the expression of BMP4. A dissecting microscope and hematoxylin and eosin (H&E) staining were used to observe the cell morphology and appearance of the polyps. DsRed fluorescence was observed in the intestines of 1-week-old F1 mice of the pSES-BMP4 group. BMP4 expression at the mRNA and protein level was reduced in 1-, 4- and 8-week-old F1 mice (P<0.05). However, the level of Smad4 mRNA was only reduced in 8-week-old F1 mice (P<0.05). Multiple hyperplasic polyps emerged in the colon and rectum of the intestines of 4-week-old F1 mice in the pSES-BMP4 group. The size of colorectal polyps increased at 8 weeks, when vessels and polyp pedicles became apparent. In conclusion, silencing of the BMP4 gene using transplacental RNAi injection can induce formation of colorectal polyps in mice.
    Molecular Medicine Reports 05/2014; 10(1). DOI:10.3892/mmr.2014.2216 · 1.48 Impact Factor
Show more

Preview (2 Sources)

Available from