Article

Enterocyte-Specific Inactivation of SIRT1 Reduces Tumor Load in the APC+/min Mouse Model

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
PLoS ONE (Impact Factor: 3.53). 06/2013; 8(6):e66283. DOI: 10.1371/journal.pone.0066283
Source: PubMed

ABSTRACT SIRT1 is a mammalian NAD(+)-dependent histone deacetylase implicated in metabolism, development, aging and tumorigenesis. Prior studies that examined the effect of enterocyte-specific overexpression and global deletion of SIRT1 on polyp formation in the intestines of APC(+/min) mice, a commonly used model for intestinal tumorigenesis, yielded conflicting results, supporting either tumor-suppressive or tumor-promoting roles for SIRT1, respectively. In order to resolve the controversy emerging from these prior in vivo studies, in the present report we examined the effect of SIRT1 deficiency confined to the intestines, avoiding the systemic perturbations such as growth retardation seen with global SIRT1 deletion. We crossed APC(+/min) mice with mice bearing enterocyte-specific inactivation of SIRT1 and examined polyp development in the progeny. We found that SIRT1-inactivation reduced total polyp surface (9.3 mm(2) vs. 23.3 mm(2), p = 0.01), average polyp size (0.24 mm(2) vs. 0.51 mm(2), p = 0.005) and the number of polyps >0.5 mm in diameter (14 vs. 23, p = 0.04), indicating that SIRT1 affects both the number and size of tumors. Additionally, tumors in SIRT1-deficient mice exhibited markedly increased numbers of cells undergoing apoptosis, suggesting that SIRT1 contributes to tumor growth by enabling survival of tumor cells. Our results indicate that SIRT1 acts as a tumor promoter in the APC(+/min) mouse model of intestinal tumorigenesis.

0 Bookmarks
 · 
58 Views
  • Source
    Oncoscience. 01/2014; 1(3):183-4.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuins are a class of enzymes with nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylase function. By deacylating various substrate proteins, including histones, transcription factors, and metabolic enzymes, sirtuins regulate various biological processes, such as transcription, cell survival, DNA damage and repair, and longevity. Small molecules that can inhibit sirtuins have been developed and many of them have shown anticancer activity. Here, we summarize the major biological findings that connect sirtuins to cancer and the different types of sirtuin inhibitors developed. Interestingly, biological data suggest that sirtuins have both tumor-suppressing and tumor-promoting roles. However, most pharmacological studies with small-molecule inhibitors suggest that inhibiting sirtuins has anticancer effects. We discuss possible explanations for this discrepancy and suggest possible future directions to further establish sirtuin inhibitors as anticancer agents.
    Future medicinal chemistry 05/2014; 6(8):945-66. · 4.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysfunction of Paneth and goblet cells in the intestine contributes to inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Here, we report a role for the NAD+-dependent histone deacetylase SIRT1 in the control of anti-bacterial defense. Mice with an intestinal specific Sirt1 deficiency (Sirt1int-/-) have more Paneth and goblet cells with a consequent rearrangement of the gut microbiota. From a mechanistic point of view, the effects on mouse intestinal cell maturation are mediated by SIRT1-dependent changes in the acetylation status of SPDEF, a master regulator of Paneth and goblet cells. Our results suggest that targeting SIRT1 may be of interest in the management of IBD and CAC.
    PLoS ONE 07/2014; 9(7):e102495. · 3.53 Impact Factor

Preview

Download
0 Downloads
Available from