Article

Sphingomyelin Synthase 2 Is One of the Determinants for Plasma and Liver Sphingomyelin Levels in Mice

Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Box 5, Brooklyn, NY 11203, USA.
Arteriosclerosis Thrombosis and Vascular Biology (Impact Factor: 6.34). 04/2009; 29(6):850-6. DOI: 10.1161/ATVBAHA.109.185223
Source: PubMed

ABSTRACT It has been proposed that plasma sphingomyelin (SM) plays a very important role in plasma lipoprotein metabolism and atherosclerosis. Sphingomyelin synthase (SMS) is the last enzyme for SM de novo biosynthesis. Two SMS genes, SMS1 and SMS2, have been cloned and characterized.
To evaluate the in vivo role of SMS2 in SM metabolism, we prepared SMS2 knockout (KO) and SMS2 liver-specific transgenic (LTg) mice and studied their plasma SM and lipoprotein metabolism. On a chow diet, SMS2 KO mice showed a significant decrease in plasma SM levels (25%, P<0.05), but no significant changes in total cholesterol, total phospholipids, or triglyceride, compared with wild-type (WT) littermates. On a high-fat diet, SMS2 KO mice showed a decrease in plasma SM levels (28%, P<0.01), whereas SMS2LTg mice showed a significant increase in those levels (29%, P<0.05), but no significant changes in other lipids, compared with WT littermates. Atherogenic lipoproteins from SMS2LTg mice displayed a significantly stronger tendency toward aggregation after mammalian sphingomyelinase treatment, compared with controls. Moreover, SMS2 deficiency significantly increased plasma apoE levels (2.0-fold, P<0.001), whereas liver-specific SMS2 overexpression significantly decreased those levels (1.8-fold, P<0.01). Finally, SMS2 KO mouse plasma promoted cholesterol efflux from macrophages, whereas SMS2LTg mouse plasma prevented it.
We therefore believe that regulation of liver SMS2 activity could become a promising treatment for atherosclerosis.

0 Bookmarks
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingomyelin synthase related protein (SMSr) synthesizes the sphingomyelin analog ceramide phosphoethanolamine (CPE) in cells. Previous cell studies indicated that SMSr is involved in ceramide homeostasis and is crucial for cell function. To furhter examine SMSr function in vivo, we generated Smsr KO mice which were fertile and had no obvious phenotypic alterations. Quantitative MS analyses of plasma, liver, and macrophages from the KO mice revealed only marginal changes in CPE and ceramide, as well as other sphingolipid levels. Because SMS2 also has CPE synthase activity, we prepared Smsr/Sms2 double KO mice. We found that CPE levels were not significantly changed in macrophages, suggesting that CPE levels are not exclusively dependent on SMSr and SMS2 activities. We then measured CPE levels in Sms1 KO mice and found that Sms1 deficiency also reduced plasma CPE levels. Importantly, we found that expression of Sms1 or Sms2 in SF9 insect cells not only significantly increased SM but also CPE formation, indicating that SMS1 also has CPE synthase activity. Our study reveals that all mouse SMS family members (SMSr, SMS1, and SMS2) have CPE synthase activity. However, neither CPE nor SMSr appears to be a critical regulator of ceramide levels in vivo. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel sensitive high-performance liquid chromatography-fluorescence detection (HPLC-FLD) method was developed for real-time monitoring of relative sphingomyelin synthase (SMS) activity based on the measurement of a fluorescent ceramide (Cer) analog and its metabolite, a fluorescent sphingomyelin (CerPCho) analog, in plasma. Analyses were conducted using HPLC-FLD following a protein precipitation procedure. The chromatographic separations were carried out on an Agilent C18 RP column (150 × 4.6 mm, 5 μm) based on a methanol-0.1 % trifluoroacetic acid aqueous solution (88:12, by vol) elution at a flow-rate of 1 mL/min. The limit of quantification in plasma was 0.05 μM for both the fluorescent Cer analog and its metabolite. Significant differences in the fluorescent Cer analog and its metabolite concentration ratio at 5 min were found between vehicle control group and three D2 (a novel SMS inhibitor) dose groups (P < 0.05). Dose-dependent effects (D2 doses: 0, 2.5, 5, 10 mg/kg) were observed. Our method could be used to detect relative SMS activity in biochemical assays and to screen potential SMS inhibitors in vivo. D2 was found to be a potent SMS inhibitor in vivo, and may have a potential antiatherosclerotic effect, which is under further study. D609 was also selected as another model SMS inhibitor to validate our newly developed method.
    Lipids 08/2014; 49(10). DOI:10.1007/s11745-014-3940-5 · 2.56 Impact Factor

Preview

Download
1 Download
Available from