A Functional Genomic Screen Identifies Cellular Cofactors of Hepatitis C Virus Replication

Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
Cell host & microbe (Impact Factor: 12.19). 04/2009; 5(3):298-307. DOI: 10.1016/j.chom.2009.02.001
Source: PubMed

ABSTRACT Hepatitis C virus (HCV) chronically infects 3% of the world's population, and complications from HCV are the leading indication for liver transplantation. Given the need for better anti-HCV therapies, one strategy is to identify and target cellular cofactors of the virus lifecycle. Using a genome-wide siRNA library, we identified 96 human genes that support HCV replication, with a significant number of them being involved in vesicle organization and biogenesis. Phosphatidylinositol 4-kinase PI4KA and multiple subunits of the COPI vesicle coat complex were among the genes identified. Consistent with this, pharmacologic inhibitors of COPI and PI4KA blocked HCV replication. Targeting hepcidin, a peptide critical for iron homeostasis, also affected HCV replication, which may explain the known dysregulation of iron homeostasis in HCV infection. The host cofactors for HCV replication identified in this study should serve as a useful resource in delineating new targets for anti-HCV therapies.

Download full-text


Available from: Andrew W. Tai, Apr 04, 2014
  • Future Virology 11/2014; 9(11):947-965. DOI:10.2217/fvl.14.83 · 1.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in a cell or an animal. The availability of genome-wide RNAi libraries targeting the mouse and human genomes has made it possible to carry out large scale, phenotype-based screens, which have yielded seminal information on diverse cellular processes ranging from virology to cancer biology. Today, several strategies are available to perform RNAi screens, each with their own technical and monetary considerations. Special care and budgeting must be taken into account during the design of these screens in order to obtain reliable results. In this review, we discuss a number of critical aspects to consider when planning an effective RNAi screening strategy, including selecting the right biological system, designing an appropriate selection scheme, optimizing technical aspects of the screen, and validating and verifying the hits. Similar to an artistic production, what happens behind the screen has a direct impact on its success.
    Briefings in functional genomics 07/2011; 10(4):215-26. DOI:10.1093/bfgp/elr018 · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hydrophobic molecules of the metabolome -also named the lipidome- constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from microbial pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. This article is protected by copyright. All rights reserved.
    Traffic 03/2015; DOI:10.1111/tra.12280 · 4.71 Impact Factor