A study on polymorphisms of elastin gene in Chinese Han patients with isolated systolic hypertension.

Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
American Journal of Hypertension (Impact Factor: 3.67). 03/2009; 22(6):656-62. DOI: 10.1038/ajh.2009.53
Source: PubMed

ABSTRACT Elastin (ELN) is mainly located in the internal elastic lamina of large arteries. Degradation of ELN is expected to induce large vessel stiffness, which could lead to elderly systolic hypertension. Recent studies have shown that polymorphism of ELN is associated with stiffness of elastic arteries and elevated blood pressure; however, there are no further studies on isolated systolic hypertension (ISH).
We identified the genotype of the ELN gene in 358 patients with ISH, 413 essential hypertension (EH) patients with elevated diastolic blood pressure (DBP), and 244 age-matched normotensive (NT) controls for five single-nucleotide polymorphisms (SNPs) and detected the brachial-ankle pulse wave velocity (baPWV), C-reactive protein (CRP), and intima-media thickness (IMT) for these patients.
ISH was statistically significant in association with SNP rs34208922 (A allele frequency was 0.068 in ISH patients, 0.036 in EH patients, and 0.014 in NT controls; P < 0.001, P(corr) < 0.005) and possibly with SNP rs2071307 (A allele frequency was 0.103 in ISH patients, 0.079 in EH patients, and 0.047 in NT controls; P = 0.002, P(corr) = 0.01), however, the A allele frequency was not different between ISH patients and EH patients. In addition, baPWV and CRP were significantly associated with SNP rs34208922 and rs2071307. The other three SNPs were not significantly associated with ISH, baPWV, CRP, or IMT. Haplotypes of TGGTA and TGAT- were also significantly associated with ISH (P = 0.0001, P(corr) = 0.0021; P = 0.0023, P(corr) = 0.0483).
Variants within the ELN gene are associated with increased risk of ISH and aortic stiffness in the Chinese Han population.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The epidermal growth factor receptor (EGFR) gene plays a key role in tumor survival, invasion, angiogenesis, and metastatic spread. Recent studies showed that gastric cancer (GC) was associated with polymorphisms of the EGFR gene and environmental influences, such as lifestyle factors. In this study, seven known SNPs in EGFR exons were investigated in a high-risk Chinese population in Jiangsu province to test whether genetic variants of EGFR exons and lifestyle are associated with an increased risk of GC. METHODOLOGYPRINCIPAL FINDINGS: A hospital-based case-control study was performed in Jiangsu province. The results showed that smoking, drinking and preference for salty food were significantly associated with the risk of GC. The differences of lifestyle between males and females might be as the reason of higher incidence rates in males than those in females. Seven exon SNPs were genotyped rs2227983,rs2072454,rs17337023,rs1050171,rs1140475, rs2293347, and rs28384375. It was noted that the variant rs2072454 T allele and TT genotype were significantly associated with an increased risk of GC. Interestingly, our result suggested the ACAGCA haplotype might be associated with decreased risk of GC. However, no significant association was examined between the other six SNPs and the risk of GC both in the total population and the age-matching population even with gender differences. CONCLUSIONS: Smoking, drinking and preference for salty food were significantly associated with the risk of GC in Jiangsu province with gender differences. Although only one SNP (rs2072454) was significantly associated with an increased risk of GC, combined the six EGFR exon SNPs together may be useful for predicting the risk of GC.
    PLoS ONE 03/2013; 8(3):e59254. DOI:10.1371/journal.pone.0059254 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and aims: Large artery stiffness and endothelial dysfunction are the predominant characteristic of isolated systolic hypertension. Recently studies have revealed MMP1, 3, 9 and TIMP3 Genes polymorphism were associated with arterial stiffness, but the relationship with isolated systolic hypertension were not further studied. This study was to investigate the associations of MMP1,3,9 and TIMP3 Genes polymorphism with isolated systolic hypertension. Methods: We identified the genotype of the genes in 503 patients with isolated systolic hypertension, 481 essential hypertension patients with elevated diastolic blood pressure and 244 age-matched normotensive controls for 5 SNPs and detected the brachial-ankle pulse wave velocity, flow-mediated dilatation, endothelin-1 and nitric oxide among the participants. Results: Multinomial logistic analyses showed that the 5A allele of rs3025058(5A/6A) in MMP3 and the T allele of rs3918242(C-1562T) in MMP9 were significantly associated with isolated systolic hypertension after adjusted by age, triglyceride, low-density lipoprotein (P<0.001, Pcorr<0.003; P=0.009, Pcorr=0.027). The 5A/G/C and 6A/A/T haplotypes were significantly associated with isolated systolic hypertension (Permutation p=0.0258; Permutation p=0.000002). In addition, the brachial-ankle pulse wave velocity of different genotypes for the 5A/6A and C-1562T polymorphisms was significantly highest in 5A or T homozygotes (P<0.01), however, the flow-mediated dilatation and nitric oxide were markedly lowest in 5A or T homozygotes (P<0.01). Conclusion: MMP3 and MMP9 genes variant seem to contribute to the development of isolated systolic hypertension by affecting arterial stiffness and endothelial function.
    International journal of medical sciences 01/2013; 10(7):840-7. DOI:10.7150/ijms.5728 · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elastin is a major structural component of elastic fibres that provide properties of stretch and recoil to tissues such as arteries, lung and skin. Remarkably, after initial deposition of elastin there is normally no subsequent turnover of this protein over the course of a lifetime. Consequently, elastic fibres must be extremely durable, able to withstand, for example in the human thoracic aorta, billions of cycles of stretch and recoil without mechanical failure. Major defects in the elastin gene (ELN) are associated with a number of disorders including Supravalvular aortic stenosis (SVAS), Williams-Beuren syndrome (WBS) and autosomal dominant cutis laxa (ADCL). Given the low turnover of elastin and the requirement for the long term durability of elastic fibres, we examined the possibility for more subtle polymorphisms in the human elastin gene to impact the assembly and long-term durability of the elastic matrix. Surveys of genetic variation resources identified 118 mutations in human ELN, 17 being non-synonymous. Introduction of two of these variants, G422S and K463R, in elastin-like polypeptides as well as full-length tropoelastin, resulted in changes in both their assembly and mechanical properties. Most notably G422S, which occurs in up to 40% of European populations, was found to enhance some elastomeric properties. These studies reveal that even apparently minor polymorphisms in human ELN can impact the assembly and mechanical properties of the elastic matrix, effects that over the course of a lifetime could result in altered susceptibility to cardiovascular disease.
    PLoS ONE 09/2012; 7(9):e46130. DOI:10.1371/journal.pone.0046130 · 3.53 Impact Factor


Available from