Article

Adenovirus serotype 5 infects human dendritic cells via a coxsackievirus–adenovirus receptor-independent receptor pathway mediated by lactoferrin and DC-SIGN

Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
Journal of General Virology (Impact Factor: 3.53). 04/2009; 90(Pt 7):1600-10. DOI: 10.1099/vir.0.008342-0
Source: PubMed

ABSTRACT The coxsackievirus-adenovirus receptor (CAR) is the described primary receptor for adenovirus serotype 5 (Ad5), a common human pathogen that has been exploited as a viral vector for gene therapy and vaccination. This study showed that monocytes and dendritic cells (DCs), such as freshly isolated human blood myeloid DCs, plasmacytoid DCs and monocyte-derived DCs, are susceptible to recombinant Ad5 (rAd5) infection despite their lack of CAR expression. Langerhans cells and dermal DCs from skin expressed CAR, but blocking CAR only partly decreased rAd5 infection, together suggesting that other receptor pathways mediate viral entry of these cells. Lactoferrin (Lf), an abundant protein in many bodily fluids known for its antiviral and antibacterial properties, promoted rAd5 infection in all cell populations except plasmacytoid DCs using a CAR-independent process. Lf caused phenotypic differentiation of the DCs, but cell activation played only a minor role in the increase in infection frequencies. The C-type lectin receptor DC-SIGN facilitated viral entry of rAd5-Lf complexes and this was dependent on high-mannose-type N-linked glycans on Lf. These results suggest that Lf present at high levels at mucosal sites can facilitate rAd5 attachment and enhance infection of DCs. A better understanding of the tropism and receptor mechanisms of Ad5 may help explain Ad5 pathogenesis and guide the engineering of improved rAd vectors.

0 Followers
 · 
117 Views
  • Source
    • "Use of lipofectamine has been reported to improve the transduction efficiency of human hematopoietic stem cells (Byk et al., 1998). Lactoferrin can be used as a bridge to enhance binding between the host cell and the virus to increase transduction efficiency (Adams et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Hearing is one of our main sensory systems and having a hearing disorder can have a significant impact in an individual's quality of life. Sensory neural hearing loss (SNHL) is the most common form of hearing loss; it results from the degeneration of inner ear sensory hair cells and auditory neurons in the cochlea, cells that are terminally differentiated. Stem cell-and gene delivery-based strategies provide an opportunity for the replacement of these cells. In recent years, there has been an increasing interest in gene delivery to mesenchymal stem cells. In this study, we evaluated the potential of human umbilical cord mesenchymal stromal cells (hUCMSCs) as a possible source for regenerating inner ear hair cells. The expression of Atoh1 induced the differentiation of hUCMSCs into cells that resembled inner ear hair cells morphologically and immunocytochemically, evidenced by the expression of hair cell-specific markers. The results demonstrated for the first time that hUCMSCs can differentiate into hair cell-like cells, thus introducing a new potential tissue engineering and cell transplantation approach for the treatment of hearing loss.
    02/2013; 15(1):43-54. DOI:10.1089/cell.2011.0097
  • Source
    • "Additionally, higher levels of transcripts for antimicrobial molecules such as cathelicidin (Camp) (section XI Table 1) and lactotransferrin (Ltf) (section XII Table 1) were detected. Human cathelicidin has been reported to inactivate adenoviruses [14] and lactotransferrin to mediate entry of adenovirus subtype 5 virus into cells [15]. The only chemokine-related genes more highly expressed in spleen i.d. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunization of BALB/c mice with a recombinant adenovirus expressing Mycobacterium tuberculosis (M. tuberculosis) antigen 85A (Ad85A) protects against aerosol challenge with M. tuberculosis only when it is administered intra-nasally (i.n.). Immunization with Ad85A induces a lung-resident population of activated CD8 T cells that is antigen dependent, highly activated and mediates protection by early inhibition of M. tuberculosis growth. In order to determine why the i.n. route is so effective compared to parenteral immunization, we used microarray analysis to compare gene expression profiles of pulmonary and splenic CD8 T cells after i.n. or intra-dermal (i.d.) immunization. Total RNA from CD8 T cells was isolated from lungs or spleens of mice immunized with Ad85A by the i.n. or i.d. route. The gene profiles generated from each condition were compared. Statistically significant (p ≤ 0.05) differentially expressed genes were analyzed to determine if they mapped to particular molecular functions, biological processes or pathways using Gene Ontology and Panther DB mapping tools. CD8 T cells from lungs of i.n. immunized mice expressed a large number of chemokines chemotactic for resting and activated T cells as well as activation and survival genes. Lung lymphocytes from i.n. immunized mice also express the chemokine receptor gene Cxcr6, which is thought to aid long-term retention of antigen-responding T cells in the lungs. Expression of CXCR6 on CD8 T cells was confirmed by flow cytometry. Our microarray analysis represents the first ex vivo study comparing gene expression profiles of CD8 T cells isolated from distinct sites after immunization with an adenoviral vector by different routes. It confirms earlier phenotypic data indicating that lung i.n. cells are more activated than lung i.d. CD8 T cells. The sustained expression of chemokines and activation genes enables CD8 T cells to remain in the lungs for extended periods after i.n. immunization. This may account for the early inhibition of M. tuberculosis growth observed in Ad85A i.n. immunized mice and explain the effectiveness of i.n. compared to parenteral immunization with this viral vector.
    BMC Medical Genomics 10/2010; 3(1):46. DOI:10.1186/1755-8794-3-46 · 3.91 Impact Factor
  • Source
    • "Huang et al demonstrated that adenovirus binds to hematopoietic cells via a penton base interaction with Integrin αMβ2, an integrin not expressed on epithelial cells, but still requires αv integrins for virus internalization [13]. Additionally, Ad5 has also been proposed to use heparan sulphate glycosaminoglycans as receptors [14,15] and to use lactoferrin as a bridge between viral particles and the cell surface [16,17]. In both of these systems, adenovirus fiber is the viral protein required for binding. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Viruses bind to specific cellular receptors in order to infect their hosts. The specific receptors a virus uses are important factors in determining host range, cellular tropism, and pathogenesis. For adenovirus, the existing model of entry requires two receptor interactions. First, the viral fiber protein binds Coxsackie and Adenovirus Receptor (CAR), its primary cellular receptor, which docks the virus to the cell surface. Next, viral penton base engages cellular integrins, coreceptors thought to be required exclusively for internalization and not contributing to binding. However, a number of studies reporting data which conflicts with this simple model have been published. These observations have led us to question the proposed two-step model for adenovirus infection. In this study we report that cells which express little to no CAR can be efficiently transduced by adenovirus. Using competition experiments between whole virus and soluble viral fiber protein or integrin blocking peptides, we show virus binding is not dependent on fiber binding to cells but rather on penton base binding cellular integrins. Further, we find that binding to low CAR expressing cells is inhibited specifically by a blocking antibody to integrin alphavbeta5, demonstrating that in these cells integrin alphavbeta5 and not CAR is required for adenovirus attachment. The binding mediated by integrin alphavbeta5 is extremely high affinity, in the picomolar range. Our data further challenges the model of adenovirus infection in which binding to primary receptor CAR is required in order for subsequent interactions between adenovirus and integrins to initiate viral entry. In low CAR cells, binding occurs through integrin alphavbeta5, a receptor previously thought to be used exclusively in internalization. We show for the first time that integrin alphavbeta5 can be used as an alternate binding receptor.
    Virology Journal 07/2010; 7:148. DOI:10.1186/1743-422X-7-148 · 2.09 Impact Factor
Show more