Article

Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells

Department for Molecular Biomedical Research, VIB, Gent, Belgium.
Nucleic Acids Research (Impact Factor: 8.81). 04/2009; 37(7):e55. DOI: 10.1093/nar/gkp112
Source: PubMed

ABSTRACT The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3-4 weeks by using Gateway cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.

Download full-text

Full-text

Available from: Jean-Christophe Marine, Jun 24, 2015
1 Follower
 · 
403 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycosylation is an essential post-translational modification, which determines the function of proteins and important processes such as inflammation. β-1,4-galactosyltransferase I (βGalT1) is a key enzyme involved in the addition of galactose moieties to glycoproteins. Intestinal mucins are glycoproteins that protect the gut barrier against invading pathogens and determine the composition of the intestinal microbiota. Proper glycosylation of mucus is important in this regard. By using ubiquitously expressing βGalT1 transgenic mice, we found that this enzyme led to strong galactosylation of mucus proteins, isolated from the gut of mice. This galactosylation was associated with a drastic change in composition of gut microbiota, as TG mice had a significantly higher Firmicutes to Bacteroidetes ratio. TG mice were strongly protected against TNF-induced systemic inflammation and lethality. Moreover, βGalT1 transgenic mice were protected in a model of DSS-induced colitis, at the level of clinical score, loss of body weight, colon length and gut permeability. These studies put βGalT1 forward as an essential protective player in exacerbated intestinal inflammation. Optimal galactosylation of N-glycans of mucus proteins, determining the bacterial composition of the gut, is a likely mechanism of this function.
    PLoS ONE 12/2013; 8(12):e79883. DOI:10.1371/journal.pone.0079883 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional activation of CTNNA3, encoding αT-catenin, by the Y153H mutated form of the human STOX1 transcription factor was proposed to be responsible for altered fetal trophoblast invasion into the maternal endometrium during placentation in pre-eclampsia. Here we have generated a mouse model to investigate the in vivo effects of ectopic αT-catenin expression on trophoblast invasion. Histological analysis was used to determine the invasive capacities of trophoblasts from transgenic embryos, as well as proliferation rates of spongiotrophoblasts in the junctional zone. Augmented expression of αT-catenin reduced the number of invading trophoblasts but did not cause embryonic mortality. The, αT-catenin positive cells could still invade into the decidual layer and migrated as deeply as wild-type trophoblasts. Furthermore, the junctional zone is enlarged in placentas of mice overexpressing αT-catenin due to hyperproliferation of the residing spongiotrophoblasts, suggesting a pivotal role of αT-catenin levels in the control of the proliferative versus invasive state of trophoblasts during placentation. Our study provides, for the first time, in vivo data on the effects of increased levels of αT-catenin in the placenta.
    Placenta 04/2012; 33(7):554-60. DOI:10.1016/j.placenta.2012.04.002 · 3.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescent proteins (FPs) have great utility in identifying specific cell populations and in studying cellular dynamics in the mouse. To quantify the factors that determine both the expression and relative brightness of FPs in mouse embryonic stem cells (mESCs) and in mice, we generated eight different FP-expressing ROSA26 alleles using recombinase-mediated cassette exchange (RMCE). These alleles enabled us to analyze the effects on FP expression of a translational enhancer and different 3'-intronic and/or polyadenylation sequences, as well as the relative brightness of five different FPs, without the confounding position and copy number effects that are typically associated with randomly inserted transgenes. We found that the expression of a given FP can vary threefold or more depending on the genetic features present in the allele. The optimal FP expression cassette contained both a translational enhancer sequence in the 5'-untranslated region (UTR) and an intron-containing rabbit β-globin sequence within the 3'-UTR. The relative expressed brightness of individual FPs varied up to tenfold. Of the five different monomeric FPs tested, Citrine (YFP) was the brightest, followed by Apple, eGFP, Cerulean (CFP) and Cherry. Generation of a line of Cherry-expressing mice showed that there was a 30-fold variation of Cherry expression among different tissues and that there was a punctate expression pattern within cells of all tissues examined. This study should help investigators make better-informed design choices when expressing FPs in mESCs and mice.
    Disease Models and Mechanisms 02/2011; 4(4):537-47. DOI:10.1242/dmm.006569 · 5.54 Impact Factor