Article

Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology

Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
BMC Microbiology (Impact Factor: 2.98). 02/2009; 9 Suppl 1(Suppl 1):S2. DOI: 10.1186/1471-2180-9-S1-S2
Source: PubMed

ABSTRACT Protein secretion plays a central role in modulating the interactions of bacteria with their environments. This is particularly the case when symbiotic bacteria (whether pathogenic, commensal or mutualistic) are interacting with larger host organisms. In the case of Gram-negative bacteria, secretion requires translocation across the outer as well as the inner membrane, and a diversity of molecular machines have been elaborated for this purpose. A number of secreted proteins are destined to enter the host cell (effectors and toxins), and thus several secretion systems include apparatus to translocate proteins across the plasma membrane of the host also. The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium has been developing standardized terms for describing biological processes and cellular components that play important roles in the interactions of microbes with plant and animal hosts, including the processes of bacterial secretion. Here we survey bacterial secretion systems known to modulate interactions with host organisms and describe Gene Ontology terms useful for describing the components and functions of these systems, and for capturing the similarities among the diverse systems.

0 Followers
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria frequently exchange metabolites by diffusion through the extracellular environment, yet it remains generally unclear whether bacteria can also use cell–cell connections to directly exchange nutrients. Here we address this question by engineering cross-feeding interactions within and between Acinetobacter baylyi and Escherichia coli, in which two distant bacterial species reciprocally exchange essential amino acids. We establish that in a well-mixed environment E. coli, but likely not A. baylyi, can connect to other bacterial cells via membrane- derived nanotubes and use these to exchange cytoplasmic constituents. Intercellular connections are induced by auxotrophy-causing mutations and cease to establish when amino acids are externally supplied. Electron and fluorescence microscopy reveal a network of nanotubular structures that connects bacterial cells and enables an intercellular transfer of cytoplasmic materials. Together, our results demonstrate that bacteria can use nanotubes to exchange nutrients among connected cells and thus help to distribute metabolic functions within microbial communities.
    Nature Communications 02/2015; 6(238):1-13. DOI:10.1038/ncomms7238 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication.
    01/2015; DOI:10.1002/mbo3.235
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type VI secretion systems (T6SSs) are newly identified contractile nanomachines that translocate effector proteins across bacterial membranes. The Francisella pathogenicity island, required for bacterial phagosome escape, intracellular replication, and virulence, was presumed to encode a T6SS-like apparatus. Here, we experimentally confirm the identity of this T6SS and, by cryo electron microscopy (cryoEM), show the structure of its post-contraction sheath at 3.7 Å resolution. We demonstrate the assembly of this T6SS by IglA/IglB and secretion of its putative effector proteins in response to environmental stimuli. The sheath has a quaternary structure with handedness opposite that of contracted sheath of T4 phage tail and is organized in an interlaced two-dimensional array by means of β sheet augmentation. By structure-based mutagenesis, we show that this interlacing is essential to secretion, phagosomal escape, and intracellular replication. Our atomic model of the T6SS will facilitate design of drugs targeting this highly prevalent secretion apparatus. Copyright © 2015 Elsevier Inc. All rights reserved.

Full-text (3 Sources)

Download
94 Downloads
Available from
May 21, 2014