Article

Comparison of immunoassay and HPLC-MS/MS used to measure urinary metabolites of atrazine, metolachlor, and chlorpyrifos from farmers and non-farmers in Iowa.

Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Surveillance, Hazard Evaluations, and Field Studies, Cincinnati, Ohio 45226, USA.
Journal of Exposure Science and Environmental Epidemiology (Impact Factor: 3.05). 04/2009; 20(2):205-12. DOI: 10.1038/jes.2009.15
Source: PubMed

ABSTRACT Urine samples were collected from 51 participants in a study investigating pesticide exposure among farm families in Iowa. Aliquots from the samples were sent to two different labs and analyzed for metabolites of atrazine (atrazine mercapturate), metolachlor (metolachlor mercapturate) and chlorpyrifos (TCP) by two different analytical methods: immunoassay and high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). HPLC-MS/MS methods tend to be highly specific, but are costly and time consuming. Immunoassay methods are cheaper and faster, but can be less sensitive due to cross reactivity and matrix effects. Three statistical methods were employed to compare the two analytical methods. Each statistical method differed in how the samples that had results below the limit of detection (LOD) were treated. The first two methods involved an imputation procedure and the third method used maximum likelihood estimation (MLE). A fourth statistical method that modeled each lab separately using MLE was used for comparison. The immunoassay and HPLC-MS/MS methods were moderately correlated (correlation 0.40-0.49), but the immunoassay methods consistently had significantly higher geometric mean (GM) estimates for each pesticide metabolite. The GM estimates for atrazine mercapturate, metolachlor mercapturate, and TCP by immunoassay ranged from 0.16-0.98 microg l(-1), 0.24-0.45 microg l(-1) and 14-14 microg l(-1), respectively and by HPLC-MS/MS ranged from 0.0015-0.0039 microg l(-1), 0.12-0.16 microg l(-1), and 2.9-3.0 microg l(-1), respectively. Immunoassays tend to be cheaper and faster than HPLC-MS/MS, however, they may result in an upward bias of urinary pesticide metabolite levels.

0 Followers
 · 
121 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The broad-spectrum organophosphate insecticide chlorpyrifos (CPF)-inducible locus, chpAB, was identified on the endogenous plasmid pSymB in Sinorhizobium meliloti. The S. meliloti chpA promoter was highly induced by CPF and was induced at much lower levels by diazinon and ethion. Transcription of chpA was dependent on chpR, a CadC family transcriptional regulator located upstream of, and divergently transcribed from, chpAB. ChpR was able to mediate the CPF-inducible expression of the S. melilotichpA promoter in Escherichia coli through direct interaction with the chpAB promoter. The chpR-chpA intergenic regions of several bacterial chpRAB operons were aligned and a putative ChpR-binding sequence was proposed. Both the ChpR transcription factor and chpA promoter constitute a good candidate system for genetic-based biosensor development.
    Journal of Molecular Microbiology and Biotechnology 04/2010; 18(3):141-7. DOI:10.1159/000308514 · 1.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pollutants representative of common environmental contaminants induce intracellular toxicity in human cells, which is generally amplified in combinations. We wanted to test the common pathways of intoxication and detoxification in human embryonic and liver cell lines. We used various pollutants such as Roundup residues, Bisphenol-A and Atrazine, and five precise medicinal plant extracts called Circ1, Dig1, Dig2, Sp1, and Uro1 in order to understand whether specific molecular actions took place or not. Kidney and liver are major detoxification organs. We have studied embryonic kidney and hepatic human cell lines E293 and HepG2. The intoxication was induced on the one hand by a formulation of one of the most common herbicides worldwide, Roundup 450 GT+ (glyphosate and specific adjuvants), and on the other hand by a mixture of Bisphenol-A and Atrazine, all found in surface waters, feed and food. The prevention and curative effects of plant extracts were also measured on mitochondrial succinate dehydrogenase activity, on the entry of radiolabelled glyphosate (in Roundup) in cells, and on cytochromes P450 1A2 and 3A4 as well as glutathione-S-transferase. Clear toxicities of pollutants were observed on both cell lines at very low sub-agricultural dilutions. The prevention of such phenomena took place within 48 h with the plant extracts tested, with success rates ranging between 25-34% for the E293 intoxicated by Roundup, and surprisingly up to 71% for the HepG2. By contrast, after intoxication, no plant extract was capable of restoring E293 viability within 48 h, however, two medicinal plant combinations did restore the Bisphenol-A/Atrazine intoxicated HepG2 up to 24-28%. The analysis of underlying mechanisms revealed that plant extracts were not capable of preventing radiolabelled glyphosate from entering cells; however Dig2 did restore the CYP1A2 activity disrupted by Roundup, and had only a mild preventive effect on the CYP3A4, and no effect on the glutathione S-transferase. Environmental pollutants have intracellular effects that can be prevented, or cured in part, by precise medicinal plant extracts in two human cell lines. This appears to be mediated at least in part by the cytochromes P450 modulation.
    Journal of Occupational Medicine and Toxicology 01/2011; 6(1):3. DOI:10.1186/1745-6673-6-3 · 1.23 Impact Factor
Show more