Article

Glis3 is associated with primary cilia and Wwtr1/TAZ and implicated in polycystic kidney disease.

LRB, Cell Biology Section, Division of Intramural Research, National Institutes of Health, Research Triangle Park, NC 27709, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 04/2009; 29(10):2556-69. DOI: 10.1128/MCB.01620-08
Source: PubMed

ABSTRACT In this study, we describe the generation and partial characterization of Krüppel-like zinc finger protein Glis3 mutant (Glis3(zf/zf)) mice. These mice display abnormalities very similar to those of patients with neonatal diabetes and hypothyroidism syndrome, including the development of diabetes and polycystic kidney disease. We demonstrate that Glis3 localizes to the primary cilium, suggesting that Glis3 is part of a cilium-associated signaling pathway. Although Glis3(zf/zf) mice form normal primary cilia, renal cysts contain relatively fewer cells with a primary cilium. We further show that Glis3 interacts with the transcriptional modulator Wwtr1/TAZ, which itself has been implicated in glomerulocystic kidney disease. Wwtr1 recognizes a P/LPXY motif in the C terminus of Glis3 and enhances Glis3-mediated transcriptional activation, indicating that Wwtr1 functions as a coactivator of Glis3. Mutations in the P/LPXY motif abrogate the interaction with Wwtr1 and the transcriptional activity of Glis3, indicating that this motif is part of the transcription activation domain of Glis3. Our study demonstrates that dysfunction of Glis3 leads to the development of cystic renal disease, suggesting that Glis3 plays a critical role in maintaining normal renal functions. We propose that localization to the primary cilium and interaction with Wwtr1 are key elements of the Glis3 signaling pathway.

0 Followers
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic kidney disease (PKD) is a life-threatening disease that leads to a grotesque enlargement of the kidney and significant loss of function. Several imaging studies with MRI have demonstrated that cyst size in polycystic kidneys can determine disease severity and progression. In the present study, we found that, although kidney volume and cyst volume decreased with drug treatment, renal function did not improve with treatment. Here, we applied dynamic contrast-enhanced MRI to study PKD in a Glis3 (GLI-similar 3)-deficient mouse model. Cysts from this model have a wide range of sizes and develop at an early age. To capture this crucial stage and assess cysts in detail, we imaged during early development (3-17 weeks) and applied high spatiotemporal resolution MRI (125 × 125 × 125 cubic microns every 7.7 s). A drug treatment with rapamycin (also known as sirolimus) was applied to determine whether disease progression could be halted. The effect and synergy (interaction) of aging and treatment were evaluated using an analysis of variance (ANOVA). Structural measurements, including kidney volume, cyst volume and cyst-to-kidney volume ratio, changed significantly with age. Drug treatment significantly decreased these metrics. Functional measurements of time-to-peak (TTP) mean and TTP variance were determined. TTP mean did not change with age, whereas TTP variance increased with age. Treatment with rapamycin generally did not affect these functional metrics. Synergistic effects of treatment and age were not found for any measurements. Together, the size and volume ratio of cysts decreased with drug treatment, whereas renal function remained the same. The quantification of renal structure and function with MRI can comprehensively assess the pathophysiology of PKD and response to treatment. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
    NMR in Biomedicine 03/2015; 28(5). DOI:10.1002/nbm.3281 · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5. © 2015. Published by The Company of Biologists Ltd.
    Development 03/2015; 142(5):871. DOI:10.1242/dev.110759 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the GLI-similar 3 (GLIS3) gene encoding the transcription factor GLIS3 are a rare cause of neonatal diabetes and congenital hypothyroidism with six affected cases from three families reported to date. Additional features, described previously, include congenital glaucoma, hepatic fibrosis, polycystic kidneys, developmental delay and facial dysmorphism. We report two new cases from unrelated families with distinct novel homozygous partial GLIS3 deletions. Both patients presented with neonatal diabetes mellitus, severe resistant hypothyroidism in the presence of elevated thyroglobulin and normal thyroid anatomy, degenerative liver disease, cystic renal dysplasia, recurrent infections and facial dysmorphism. These novel mutations have also resulted in osteopenia, bilateral sensorineural deafness and pancreatic exocrine insufficiency, features that have not previously been associated with GLIS3 mutations. Gene dosage analysis showed that the parents were carriers of a deletion encompassing exons 1-2 (case 1) or exons 1-4 (case 2) of the 11 exon gene. Genome-wide SNP analysis did not reveal a common ancestral GLIS3 haplotype in patient 2. Our results confirm partial gene deletions as the most common type of GLIS3 mutations, accounting for four of five families identified to date. We propose that mutations in GLIS3 lead to a wider clinical phenotype than previously recognised. We also report the first case of a recessive GLIS3 mutation causing neonatal diabetes and congenital hypothyroidism in a child from a non-consanguineous pedigree, highlighting the importance of molecular genetic testing in any patient with this phenotype.
    European Journal of Endocrinology 03/2011; 164(3):437-43. DOI:10.1530/EJE-10-0893 · 3.69 Impact Factor