Post-transcriptional gene regulation by MAP kinases via AU-rich elements.

Kennedy Institute of Rheumatology Division, Imperial College London, 1 Aspenlea Road, Hammersmith, London W6 8LH, UK.
Frontiers in Bioscience (Impact Factor: 4.25). 02/2009; 14:847-71.
Source: PubMed

ABSTRACT Eukaryotic cells must continuously sense their environments, for example their attachment to extracellular matrix and proximity to other cells, differences in temperature or redox conditions, the presence of nutrients, growth factors, hormones, cytokines or pathogens. The information must then be integrated and an appropriate response initiated by modulating the cellular programme of gene expression. The mitogen-activated protein kinase (MAPK) signaling pathways play a critical role in this process. Decades of research have illuminated the many ways in which MAPKs regulate the synthesis of mRNA (transcription) via phosphorylation of transcription factors, cofactors, and other proteins. In recent years it has become increasingly clear that the control of mRNA destruction is equally important for cellular responses to extracellular cues, and is equally subject to regulation by MAPKs. This review will summarize our current understanding of post-transcriptional regulation of gene expression by the MAPKs and the proteins that are involved in this process.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks control rhythmic expression of a large number of genes in coordination with the 24 h day-night cycle. The mechanisms generating circadian rhythms, their amplitude and circadian phase are dependent on a transcriptional network of immense complexity. Moreover, the contribution of post-transcriptional mechanisms in generating rhythms in RNA abundance is not known. Here, we analyzed the clock-controlled transcriptome of Neurospora crassa together with temporal profiles of elongating RNA polymerase II. Our data indicate that transcription contributes to the rhythmic expression of the vast majority of clock-controlled genes (ccg's) in Neurospora. The ccg's accumulate in two main clusters with peak transcription and expression levels either at dawn or dusk. Dawn-phased genes are predominantly involved in catabolic and dusk-phased genes in anabolic processes, indicating a clock-controlled temporal separation of the physiology of Neurospora. Genes whose expression is strongly dependent on the core circadian activator WCC fall mainly into the dawn-phased cluster while rhythmic genes regulated by the glucose-dependent repressor CSP1 fall predominantly into the dusk-phased cluster. Surprisingly, the number of rhythmic transcripts increases about twofold in the absence of CSP1, indicating that rhythmic expression of many genes is attenuated by the activity of CSP1. The data indicate that the vast majority of transcript rhythms in Neurospora are generated by dawn and dusk specific transcription. Our observations suggest a substantial plasticity of the circadian transcriptome with respect to the number of rhythmic genes as well as amplitude and phase of the expression rhythms and emphasize a major role of the circadian clock in the temporal organization of metabolism and physiology.
  • [Show abstract] [Hide abstract]
    ABSTRACT: MAPK phosphatases (MKPs)2 are critical modulators of the innate immune response, and yet the mechanisms regulating their accumulation remain poorly understood. In the present studies, we investigated the role of post-translational modification in the accumulation of MKP-1 and MKP-2 in macrophages following LPS stimulation. We found that upon LPS stimulation, MKP-1 and MKP-2 accumulated with different kinetics: MKP-1 level peaked at ~1 h, while MKP-2 level continued to rise for at least 6 h. Accumulation of both MKP-1 and MKP-2 were attenuated by inhibition of the ERK cascade. Interestingly, p38 inhibition prior to LPS stimulation had little effect on the protein levels of MKP-1 and MKP-2, but hindered their detection by the M-18 polyclonal MKP-1 antibody. Mass-spectrometry of the M-18 immunogen revealed a sequence corresponding to the MKP-1 C-terminus that is partially conserved in MKP-2 and contains two serine residues. Incubation of the lysates from SB203580-treated, LPS-stimulated macrophages with phosphatases in vitro substantially enhanced the recognition of both MKP-1 and MKP-2 by M18 MKP-1 antibody. The stability of MKP-2 was markedly decreased when the ERK pathway was inhibited. Mutation of the two C-terminal serine residues in MKP-1 and MKP-2 to alanine decreased their half-lives, while mutating these residues to aspartate dramatically increased their half-lives. Deletion of the C-terminus from MKP-1 and MKP-2 also considerably increased their stabilities. Surprisingly, enhanced stabilities of the MKP-1 and MKP-2 mutants were not associated with decreased ubiquitination. Our studies illustrate the critical role of ERK-mediated phosphorylation in the regulation of MKPs during the inflammatory response.
    Journal of Biological Chemistry 09/2014; 289(42). DOI:10.1074/jbc.M114.591925 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.