Article

Hybrid of baculovirus and galactosylated PEI for efficient gene carrier.

Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea.
Virology (Impact Factor: 3.35). 04/2009; 387(1):89-97. DOI: 10.1016/j.virol.2009.02.001
Source: PubMed

ABSTRACT Baculovirus, containing an appropriate eukaryotic promoter, is considered an attractive approach for an efficient and safe gene delivery vehicle. However, the drawbacks of baculovirus, such as the lack of specificity and the inactivation of baculovirus by the complement system in human serum, negatively affect efficient gene delivery. Therefore, a hybrid system utilizing the positive aspects of both viral and non-viral vector systems would be useful to overcome the obstacles of either system alone. In this study, we constructed a hybrid system composed of baculovirus (B) and galactosylated polyethylenimine (GP)/DNA complexes through electrostatic interaction. The resulting GP/B hybrid had suitable physicochemical properties and low cytotoxicity for use in gene therapy. Furthermore, the GP/B significantly enhanced transduction efficiency and showed good cell-specificity compared to either viral or non-viral vector systems. These results suggest that the GP/B hybrid system can be used in gene therapy to enhance transduction efficiency and hepatocyte specificity.

0 Bookmarks
 · 
78 Views
  • 11/2013: pages 137-164; , ISBN: 978-953-51-1207-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vesicular stomatitis virus G glycoprotein (VSV-G) is the most widely used envelope protein for retroviral and lentiviral vector pseudotyping; however, serum inactivation of VSV-G pseudotyped vectors is a significant challenge for in vivo gene delivery. To address this problem, we conducted directed evolution of VSV-G to increase its resistance to human serum neutralization. After six selection cycles, numerous common mutations were present. On the basis of their location within VSV-G, we analyzed whether substitutions in several surface exposed residues could endow viral vectors with higher resistance to serum. S162T, T230N and T368A mutations enhanced serum resistance, and additionally K66T, T368A and E380K substitutions increased the thermostability of VSV-G pseudotyped retroviral vectors, an advantageous byproduct of the selection strategy. Analysis of a number of combined mutants revealed that VSV-G harboring T230N+T368A or K66T+S162T+T230N+T368A mutations exhibited both higher in vitro resistance to human serum and higher thermostability, as well as enhanced resistance to rabbit and mouse serum. Finally, lentiviral vectors pseudotyped with these variants were more resistant to human serum in a murine model. These serum-resistant and thermostable VSV-G variants may aid the application of retroviral and lentiviral vectors to gene therapy.Gene Therapy advance online publication, 31 January 2013; doi:10.1038/gt.2013.1.
    Gene therapy 01/2013; · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction has demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions.
    Advanced drug delivery reviews 02/2014; · 11.96 Impact Factor

Full-text (2 Sources)

View
14 Downloads
Available from
May 29, 2014