Article

Antioxidant-Based Lead Discovery for Cancer Chemoprevention: The Case of Resveratrol (Retracted Article. See vol 52, pg 6504, 2009)

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu, China.
Journal of Medicinal Chemistry (Impact Factor: 5.48). 05/2009; 52(7):1963-74. DOI: 10.1021/jm8015415
Source: PubMed

ABSTRACT Resveratrol is a well-known natural antioxidant and cancer chemopreventive agent that has attracted much interest in the past decade. Resveratrol-directed compounds were synthesized, and their antioxidant effects against reactive oxygen species (ROS)-induced DNA damage, their prooxidant effects on DNA damage in the presence cupric ions, and their cytotoxic and apoptosis-inducing effects on human promyelocytic leukemia (HL-60) cells were investigated in vitro. It was found that the compounds bearing o-diphenoxyl groups exhibited remarkably higher activities in inhibiting ROS-induced DNA damage, accelerating DNA damage in the presence cupric ions, and inducing apoptosis of HL-60 cells compared with the ones bearing no such groups. The detail mechanism of the structure-activity relationship was also studied by the oxidative product analysis of resveratrol and its analogues with galvinoxyl radical or cupric ions and UV-visible spectra change in the presence cupric ions. This study reveals a good and interesting correlation between antioxidant and prooxidant activity, as well as cytotoxicity and apoptosis-inducing activity against HL-60 cells, and provides an idea for designing antioxidant-based cancer chemoprevention agents.

0 Followers
 · 
123 Views
  • Journal of Medicinal Chemistry 10/2009; 52(20):6504. DOI:10.1021/jm901413p · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effectiveness of hydroxycinnamic acids (HCAs), that is, caffeic acid (CaA), chlorogenic acid (ChA), sinapic acid (SA), ferulic acid (FA), 3-hydroxycinnamic acid (3-HCA), and 4-hydroxycinnamic acid (4-HCA), as pBR322 plasmid DNA-cleaving agents in the presence of Cu(II) ions was investigated. Compounds bearing o-hydroxy or 3,5-dimethoxy groups on phenolic rings (CaA, SA, and ChA) were remarkably more effective at causing DNA damage than the compounds bearing no such groups; furthermore, CaA was the most active among the HCAs examined. The involvement of reactive oxygen species (ROS) and Cu(I) ions in the DNA damage was affirmed by the inhibition of the DNA breakage by using specific scavengers of ROS and a Cu(I) chelator. The interaction between CaA and Cu(II) ions and the influence of ethylenediaminetetraacetic acid (EDTA), the solvent, and pH value on the interaction were also studied to help elucidate the detailed prooxidant mechanism by using UV/Vis spectroscopic analysis. On the basis of these observations, it is proposed that it is the CaA phenolate anion, instead of the parent molecule, that chelates with the Cu(II) ion as a bidentate ligand, hence facilitating the intramolecular electron transfer to form the corresponding CaA semiquinone radical intermediate. The latter undergoes a second electron transfer with oxygen to form the corresponding o-quinone and a superoxide, which play a pivotal role in the DNA damage. The intermediacy of the semiquinone radical was supported by isolation of its dimer from the Cu(II)-mediated oxidation products. Intriguingly, CaA was also the most cytotoxic compound among the HCAs toward human promyelocytic leukemia (HL-60) cell proliferation. Addition of exogenous Cu(II) ions resulted in an effect dichotomy on cell viability depending on the concentration of CaA; that is, low concentrations of CaA enhanced the cell viability and, conversely, high concentrations of CaA almost completely inhibited the cell proliferation. On the other hand, when superoxide dismutase was added before, the two stimulation effects of exogenous Cu(II) ions were significantly ameliorated, thus clearly indicating that the oxidative-stress level regulates cell proliferation and death. These findings provide direct evidence for the antioxidant/prooxidant mechanism of cancer chemoprevention.
    Chemistry - A European Journal 11/2009; 15(46):12889-12899. DOI:10.1002/chem.200901627 · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included.
    International Journal of Molecular Sciences 02/2010; 11(2). DOI:10.3390/ijms11020622 · 2.34 Impact Factor
Show more