Article

Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex.

Nature Cell Biology (Impact Factor: 20.06). 05/2009; 11(4):468-76. DOI: 10.1038/ncb1854
Source: PubMed

ABSTRACT Beclin 1, a mammalian autophagy protein that has been implicated in development, tumour suppression, neurodegeneration and cell death, exists in a complex with Vps34, the class III phosphatidylinositol-3-kinase (PI(3)K) that mediates multiple vesicle-trafficking processes including endocytosis and autophagy. However, the precise role of the Beclin 1-Vps34 complex in autophagy regulation remains to be elucidated. Combining mouse genetics and biochemistry, we have identified a large in vivo Beclin 1 complex containing the known proteins Vps34, p150/Vps15 and UVRAG, as well as two newly identified proteins, Atg14L (yeast Atg14-like) and Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein). Characterization of the new proteins revealed that Atg14L enhances Vps34 lipid kinase activity and upregulates autophagy, whereas Rubicon reduces Vps34 activity and downregulates autophagy. We show that Beclin 1 and Atg14L synergistically promote the formation of double-membraned organelles that are associated with Atg5 and Atg12, whereas forced expression of Rubicon results in aberrant late endosomal/lysosomal structures and impaired autophagosome maturation. We hypothesize that by forming distinct protein complexes, Beclin 1 and its binding proteins orchestrate the precise function of the class III PI(3)K in regulating autophagy at multiple steps.

0 Followers
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta-9-Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy-related genes remained unaltered. Pharmacological inhibition of CB1 activity using Rimonabant likewise caused an elevated autophagic flux, which was independent of the mammalian target of rapamycin complex 1 (mTOR), a major switch in the control of canonical autophagy. In addition, knocking down BECLIN1, the key-protein of the second canonical autophagy control complex, was insufficient to reduce the elevated autophagic flux induced by Rimonabant. Interestingly, lysosomal activity is not altered, suggesting a specific effect of CB1 on the regulation of autophagic flux. We conclude that CB1 activity affects the autophagic flux independently of the two major canonic regulation complexes controlling autophagic vesicle formation.This article is protected by copyright. All rights reserved.
    Journal of Neurochemistry 07/2014; 131(4). DOI:10.1111/jnc.12839 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The strategy for interpreting the role of autophagy on the basis of evidence obtained through autophagic inhibition sounds logical, but is beset with practical constraints. The knock down of autophagy-related (ATG) gene(s) or blockage of class III PI3-Kinase are the most common approaches for inhibiting autophagy. However, during stressful conditions, autophagy may operate in synchrony with other processes such as apoptosis; autophagy-related genes, unlike what their name implies, exert their regulation on apoptosis as well. Knocking down such genes not only blocks autophagy but also renders apoptosis defective, making the interpretation of autophagic roles unreliable. Similarly, class III PI3-Kinase aids in initiating autophagy but it is not a quintessential autophagic regulator. Class III PI3-Kinase also has a role in regulating almost all membrane transport in cells. Blocking it not only inhibits autophagy, but also hampers all the membrane trades, including endosomal transport. The pharmacological inhibitors used to block autophagy by blocking class III PI3-Kinase further compound these limitations with their off-target effects. Knowing the limitations involved in blocking a target or using an autophagy-blocking tool is a prerequisite for designing the experiments meant for analyzing autophagic functions. This review attempts to provide a detailed overview about the practical constraints involved in using autophagic inhibition as a strategy to understand autophagy.
    Pharmacological Research 03/2014; DOI:10.1016/j.phrs.2014.03.005 · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15-Vps34 and Atg14-Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15-Vps34 and Atg14-Vps30 subcomplexes to facilitate complex I formation.
    The Journal of Cell Biology 10/2013; 203(2):299-313. DOI:10.1083/jcb.201304123 · 9.69 Impact Factor

Preview

Download
0 Downloads
Available from