Article

Genome-wide Association and Replication Studies Identified TRHR as an Important Gene for Lean Body Mass

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi, P R China.
The American Journal of Human Genetics (Impact Factor: 10.99). 04/2009; 84(3):418-23. DOI: 10.1016/j.ajhg.2009.02.004
Source: PubMed

ABSTRACT Low lean body mass (LBM) is related to a series of health problems, such as osteoporotic fracture and sarcopenia. Here we report a genome-wide association (GWA) study on LBM variation, by using Affymetrix 500K single-nucleotide polymorphism (SNP) arrays. In the GWA scan, we tested 379,319 eligible SNPs in 1,000 unrelated US whites and found that two SNPs, rs16892496 (p = 7.55 x 10(-8)) and rs7832552 (p = 7.58 x 10(-8)), within the thyrotropin-releasing hormone receptor (TRHR) gene were significantly associated with LBM. Subjects carrying unfavorable genotypes at rs16892496 and rs7832552 had, on average, 2.70 and 2.55 kg lower LBM, respectively, compared to those with alternative genotypes. We replicated the significant associations in three independent samples: (1) 1488 unrelated US whites, (2) 2955 Chinese unrelated subjects, and (3) 593 nuclear families comprising 1972 US whites. Meta-analyses of the GWA scan and the replication studies yielded p values of 5.53 x 10(-9) for rs16892496 and 3.88 x 10(-10) for rs7832552. In addition, we found significant interactions between rs16892496 and polymorphisms of several other genes involved in the hypothalamic-pituitary-thyroid and the growth hormone-insulin-like growth factor-I axes. Results of this study, together with the functional relevance of TRHR in muscle metabolism, support the TRHR gene as an important gene for LBM variation.

Download full-text

Full-text

Available from: Shawn Levy, Sep 12, 2014
0 Followers
 · 
148 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic factors are important for the development of sarcopenia, a geriatric disorder characterized by low lean body mass. The aim of this study was to search for novel genes that regulate lean body mass in humans. We performed a large-scale search for 250K single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD) using SNP arrays in 1081 Japanese postmenopausal women. We focused on an SNP (rs12409277) located in the 5′-flanking region of the PRDM16 (PRD1-BF-1-RIZ1 homologous domain containing protein 16) gene that showed a significant P value in our screening. We demonstrated that PRDM16 gene polymorphisms were significantly associated with total body BMD in 1081 postmenopausal Japanese women. The rs12409277 SNP affected the transcriptional activity of PRDM16. The subjects with one or two minor allele(s) had a higher lean body mass than the subjects with two major alleles. Genetic analyses uncovered the importance of the PRDM16 gene in the regulation of lean body mass.
    Aging cell 05/2014; DOI:10.1111/acel.12228 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persons aged 80 years and older are the fastest growing segment of the population. As more individuals live longer, we should try to understand the mechanisms involved in healthy ageing and preserving functional independence in later life. In elderly people, functional independence is directly dependent on physical fitness, and ageing is inevitably associated with the declining functions of systems and organs (heart, lungs, blood vessels, skeletal muscles) that determine physical fitness. Thus, age-related diminished physical fitness contributes to the development of sarcopenia, frailty or disability, all of which severely deteriorate independent living and thus quality of life. Ageing is a complex process involving many variables that interact with one another, including - besides lifestyle factors or chronic diseases - genetics. Thus, several studies have examined the contribution of genetic endowment to a decline in physical fitness and subsequent loss of independence in later life. In this review, we compile information, including data from heritability, candidate-gene association, linkage and genome-wide association studies, on genetic factors that could influence physical fitness in the elderly.
    Ageing research reviews 09/2012; 12(1):90-102. DOI:10.1016/j.arr.2012.09.003 · 7.63 Impact Factor
  • Source
    Journal of musculoskeletal & neuronal interactions 9(3):121-2. · 2.40 Impact Factor