The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes

Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Plymouth, UK.
Diabetologia (Impact Factor: 6.88). 04/2009; 52(6):1143-51. DOI: 10.1007/s00125-009-1276-0
Source: PubMed

ABSTRACT Evidence that the beta cells of human patients with type 1 diabetes can be infected with enterovirus is accumulating, but it remains unclear whether such infections occur at high frequency and are important in the disease process. We have now assessed the prevalence of enteroviral capsid protein vp1 (vp1) staining in a large cohort of autopsy pancreases of recent-onset type 1 diabetic patients and a range of controls.
Serial sections of paraffin-embedded pancreatic autopsy samples from 72 recent-onset type 1 diabetes patients and up to 161 controls were immunostained for insulin, glucagon, vp1, double-stranded RNA activated protein kinase R (PKR) and MHC class I.
vp1-immunopositive cells were detected in multiple islets of 44 out of 72 young recent-onset type 1 diabetic patients, compared with a total of only three islets in three out of 50 neonatal and paediatric normal controls. vp1 staining was restricted to insulin-containing beta cells. Among the control pancreases, vp1 immunopositivity was also observed in some islets from ten out of 25 type 2 diabetic patients. A strong correlation was established between islet cell vp1 positivity and PKR production in insulin-containing islets of both type 1 and type 2 diabetic patients, consistent with a persistent viral infection of the islets.
Immunoreactive vp1 is commonly found in the islets of recent-onset type 1 diabetes patients, but only rarely in normal paediatric controls. vp1 immunostaining was also observed in some islets of type 2 diabetes patients, suggesting that the phenomenon is not restricted to type 1 diabetes patients.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beyond acute clinical conditions, the role of enteroviruses (EVs) in chronic human diseases has been described. Although they are considered as highly cytolytic viruses, EVs can persist in various tissues. The persistence is believed to play a major role in the pathogenesis of EV related chronic diseases such as type 1 diabetes (T1D). T1D is characterized by an autoimmune destruction of pancreatic beta cells, and results from interplay between a genetic predisposition, the immune system, and environmental factors. EVs and especially group B coxsackieviruses (CVB) have been the most incriminated as exogenous agents involved in the development of T1D. Enteroviral persistence is the result of a virus-host coevolution combining a cell resistance to lysis through mutations or down-regulation of viral receptor, and a decrease of the viral replication by genomic modifications or the production of a stable double-stranded RNA form. CVB can persist in pancreatic cells and therefore could trigger, in genetically predisposed individuals, the autoimmune destruction of beta cells mainly through an activation of inflammation. The persistence of the virus in other tissues such as intestine, blood cells, and thymus has been described, and could also contribute to some extent to the enteroviral pathogenesis of T1D. The molecular and cellular mechanisms of CVB persistence and the link with the development of T1D should be investigated further.
    Discovery medicine 11/2014; 18(100):273-82. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes mellitus (T1DM) is caused by the selective deletion of pancreatic β-cells in response to an assault mounted within the pancreas by infiltrating immune cells. However, this apparently clear and focussed annunciation conceals a stark reality in which the cellular and molecular events leading to β-cell loss remain poorly understood in humans. This reflects the difficulty of studying these processes in living individuals and the fact that, using pathological specimens, islet inflammation has been analysed in fewer than 200 recent-onset cases of T1DM worldwide, over the past century. Nevertheless, insights have been gained and the composition of the islet infiltrate is being disclosed. This is shown to be primarily lymphocytic in nature, with populations of both CD8+ and CD4+ T cells displaying an autoreactivity against specific islet antigenic peptides. The T cells are often accompanied by influent CD20+ B cells, although new data imply that the proportions of these individual cell types vary and that patients fall into at least two distinct categories having either a hyper-immune (CD20Hi) or a pauci-immune (CD20Lo) phenotype. The overall rate of β-cell decline appears to correlate with these two phenotypes such that hyper-immune patients lose β-cells more quickly and tend to develop disease at an earlier age than those with the pauci-immune profile. In this article, we review the evidence which underpins our current understanding of the aetiology of T1DM and highlight both the established features as well as areas of on-going ambiguity and debate. © 2014 IUBMB Life, 2014
    International Union of Biochemistry and Molecular Biology Life 12/2014; 66(11). DOI:10.1002/iub.1330 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review type 1 diabetes and host genetic components, as well as epigenetics and viruses associated with type 1 diabetes, with added emphasis on the enteroviruses, which are often associated with triggering the disease. Genus Enterovirus is classified into twelve species of which seven (Enterovirus A, Enterovirus B, Enterovirus C, and Enterovirus D and Rhinovirus A, Rhinovirus B, and Rhinovirus C) are human pathogens. These viruses are transmitted mainly by the fecal-oral route; they may also spread via the nasopharyngeal route. Enterovirus infections are highly prevalent, but these infections are usually subclinical or cause a mild flu-like illness. However, infections caused by enteroviruses can sometimes be serious, with manifestations of meningoencephalitis, paralysis, myocarditis, and in neonates a fulminant sepsis-like syndrome. These viruses are often implicated in chronic (inflammatory) diseases as chronic myocarditis, chronic pancreatitis, and type 1 diabetes. In this review we discuss the currently suggested mechanisms involved in the viral induction of type 1 diabetes. We recapitulate current basic knowledge and definitions.
    12/2014; DOI:10.1155/2014/738512

Full-text (2 Sources)

Available from
May 22, 2014