Article

The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes

Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Plymouth, UK.
Diabetologia (Impact Factor: 6.88). 04/2009; 52(6):1143-51. DOI: 10.1007/s00125-009-1276-0
Source: PubMed

ABSTRACT Evidence that the beta cells of human patients with type 1 diabetes can be infected with enterovirus is accumulating, but it remains unclear whether such infections occur at high frequency and are important in the disease process. We have now assessed the prevalence of enteroviral capsid protein vp1 (vp1) staining in a large cohort of autopsy pancreases of recent-onset type 1 diabetic patients and a range of controls.
Serial sections of paraffin-embedded pancreatic autopsy samples from 72 recent-onset type 1 diabetes patients and up to 161 controls were immunostained for insulin, glucagon, vp1, double-stranded RNA activated protein kinase R (PKR) and MHC class I.
vp1-immunopositive cells were detected in multiple islets of 44 out of 72 young recent-onset type 1 diabetic patients, compared with a total of only three islets in three out of 50 neonatal and paediatric normal controls. vp1 staining was restricted to insulin-containing beta cells. Among the control pancreases, vp1 immunopositivity was also observed in some islets from ten out of 25 type 2 diabetic patients. A strong correlation was established between islet cell vp1 positivity and PKR production in insulin-containing islets of both type 1 and type 2 diabetic patients, consistent with a persistent viral infection of the islets.
Immunoreactive vp1 is commonly found in the islets of recent-onset type 1 diabetes patients, but only rarely in normal paediatric controls. vp1 immunostaining was also observed in some islets of type 2 diabetes patients, suggesting that the phenomenon is not restricted to type 1 diabetes patients.

Download full-text

Full-text

Available from: Sarah J Richardson, Jun 18, 2015
0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Metabolic syndrome (MetS) is characterized by central obesity, insulin resistance, dysglycemia, and a pro-atherogenic plasma lipid profile. MetS creates a high risk for development of type 2 diabetes (T2DM) and cardiovascular disease (CVD), presumably by altering inflammatory responses. Presently, it is unknown how the chronic metabolic disturbances in acute hyperglycemia, MetS and T2DM affect the immune activity of peripheral blood cells. Methods We performed genome-wide expression analysis of peripheral blood cells obtained from patients with T2DM (n = 6) and age-, sex- , BMI- and blood pressure-matched obese individuals with MetS (n = 4) and lean healthy normoglycemic controls (n = 3), both under fasting conditions and after controlled induction of acute hyperglycemia during a 70 min hyperglycemic clamp. Differential gene expression during fasting conditions was confirmed by real-time PCR, for which we included additional age-, sex-, BMI-, and blood pressure-matched obese individuals with (n = 4) or without (n = 4) MetS. Results Pathway and Gene ontology analysis applied to baseline expression profiles of peripheral blood cells from MetS and T2DM patients revealed metabolic changes, highly similar to a reoviral infection gene signature in T2DM patients. Transcription factor binding site analysis indicated that increased HIF-1α activity, a transcription factor induced by either hypoxia or oxidative stress, is responsible for this aberrant metabolic profile in peripheral blood cells from T2DM patients. Acute hyperglycemia in healthy controls resulted in reduced expression of cytotoxicity-related genes, representing NK- and CD8+ cells. In obese controls, MetS and especially T2DM patients, baseline expression of genes involved in cytotoxicity was already low, compared to healthy controls and did not further decrease upon acute hyperglycemia. Conclusions The reduced activity of cytotoxic genes in T2DM is explained by chronic hyperglycemia, but its acute effects are restricted to healthy controls. Genome expression of circulating leukocytes from T2DM patients differs from MetS individuals by a specific reovirus signature. Our data thus suggest a role for suppressed anti-viral capacity in the etiology of diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0096-y) contains supplementary material, which is available to authorized users.
    BMC Medical Genomics 05/2015; 8. DOI:10.1186/s12920-015-0096-y · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes (T1D) is an autoimmune disease characterized by loss of insulin producing beta cells and reliance on exogenous insulin for survival. T1D is one of the most common chronic diseases in childhood and the incidence is increasing, especially in children less than 5 years of age. In individuals with a genetic predisposition, an unidentified trigger initiates an abnormal immune response and the development of islet autoantibodies directed against proteins in insulin producing beta cells. There are currently four biochemical islet autoantibodies measured in the serum directed against insulin, glutamic decarboxylase, islet antigen 2, and zinc transporter 8. Development of islet autoantibodies occurs before clinical diagnosis of T1D, making T1D a predictable disease in an individual with 2 or more autoantibodies. Screening for islet autoantibodies is still predominantly done through research studies, but efforts are underway to screen the general population. The benefits of screening for islet autoantibodies include decreasing the incidence of diabetic ketoacidosis that can be life threatening, initiating insulin therapy sooner in the disease process, and evaluating safe and specific therapies in large randomized clinical intervention trials to delay or prevent progression to diabetes onset.
    04/2015; 6(3):380-90. DOI:10.4239/wjd.v6.i3.380
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 1 diabetes (T1D) is characterized by the destruction of the insulin-producing β-cells of pancreatic islets. Genetic and environmental factors both contribute to T1D development. Viral infection with enteroviruses is a suspected trigger for T1D but a causal role remains unproven and controversial. Studies in animals are problematic because of species-specific differences in host cell susceptibility and immune responses to candidate viral pathogens such as coxsackie B virus (CVB). In order to resolve the controversial role of viruses in human T1D, we developed a viral infection model in immunodeficient mice bearing human islet grafts. Hyperglycemia was induced in mice by specific ablation of native β-cells. Human islets, which are naturally susceptible to CVB infection, were transplanted to restore normoglycemia. Transplanted mice were infected with CVB4 and monitored for hyperglycemia. Forty-seven percent of CVB4-infected mice developed hyperglycemia. Human islet grafts from infected mice contained viral RNA, expressed viral protein, and had reduced insulin compared to grafts from uninfected mice. Human-specific gene expression profiles in grafts from infected mice revealed the induction of multiple interferon stimulated genes. Thus, human islets can become severely dysfunctional with diminished insulin production following CVB infection of β-cells, resulting in diabetes.
    Diabetes 11/2014; 64(4). DOI:10.2337/db14-1020 · 8.47 Impact Factor