RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1.

Department of Infectious Diseases, King's College London, London, United Kingdom.
PLoS Pathogens (Impact Factor: 8.06). 04/2009; 5(3):e1000330. DOI: 10.1371/journal.ppat.1000330
Source: PubMed

ABSTRACT The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Human APOBEC3H (A3H) belongs to the A3 family of host restriction factors, which are cytidine deaminases that catalyze conversion of deoxycytidine to deoxyuridine in single-stranded DNA. A3 proteins contain either one (A3A, A3C, A3H) or two (A3B, A3D, A3F, A3G) Zn-binding domains. A3H has seven haplotypes (I-VII) that exhibit diverse biological phenotypes and geographical distribution in the human population. Its single Zn-coordinating deaminase domain belongs to a phylogenetic cluster (Z3) that is different from the Z1- and Z2-type domains in other human A3 proteins. A3H HapII, unlike A3A or A3C, has potent activity against HIV-1. Here, we sought to identify the determinants of A3H HapII deaminase and antiviral activities, using site-directed sequence- and structure-guided mutagenesis together with cell-based, biochemical, and HIV-1 infectivity assays.ResultsWe have constructed a homology model of A3H HapII, which is similar to the known structures of other A3 proteins. The model revealed a large cluster of basic residues (not present in A3A or A3C) that are likely to be involved in nucleic acid binding. Indeed, RNase A pretreatment of 293T cell lysates expressing A3H was shown to be required for detection of deaminase activity, indicating that interaction with cellular RNAs inhibits A3H catalytic function. Similar observations have been made with A3G. Analysis of A3H deaminase substrate specificity demonstrated that a 5¿ T adjacent to the catalytic C is preferred. Changing the putative nucleic acid binding residues identified by the model resulted in reduction or abrogation of enzymatic activity, while substituting Z3-specific residues in A3H to the corresponding residues in other A3 proteins did not affect enzyme function. As shown for A3G and A3F, some A3H mutants were defective in catalysis, but retained antiviral activity against HIV-1vif (¿) virions. Furthermore, endogenous reverse transcription assays demonstrated that the E56A catalytic mutant inhibits HIV-1 DNA synthesis, although not as efficiently as wild type.Conclusions The molecular and biological activities of A3H are more similar to those of the double-domain A3 proteins than to those of A3A or A3C. Importantly, A3H appears to use both deaminase-dependent and -independent mechanisms to target reverse transcription and restrict HIV-1 replication.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of a virus particle to establish an infectious event is a fundamental property required for viral propagation and survival. Retrovirus invasion of target cells is a multistep process that begins with entry into the cytoplasm and culminates with the integration of the proviral genome into the host DNA. Along this journey, many obstacles await the retrovirus particle and undermine its infectivity. Host-cell barriers to retrovirus infection can either be basic structural components of the eukaryotic cell or specific antiretroviral activities developed by the cell to prevent the retroviral invasion. Resulting from a long host-parasite coevolution, retroviruses have developed auxiliary factors that promote infectivity by conferring the virion the ability to overcome several cellular obstacles, which interfere with the infection process. Here, we provide an overview of different retroviral auxiliary factors that promote virion infectivity, comparing their mechanism of action and highlighting common mechanistic strategies. Special attention is given to infectivity factors that remain enigmatic in the biology of retroviruses. © 2015 Elsevier Inc. All rights reserved.
    Progress in molecular biology and translational science 129C:213-251. DOI:10.1016/bs.pmbts.2014.10.008 · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A majority of the human genome is transcribed into noncoding RNAs, of which the functions of long noncoding RNAs (lncRNAs) are poorly understood. Many host proteins and RNAs have been characterized for their roles in HIV/AIDS pathogenesis, but there is only one lncRNA, NEAT1, which is shown to affect the HIV-1 life cycle. We profiled 90 disease-related lncRNAs and found NRON (noncoding repressor of Nuclear Factor of Activated T cells [NFAT]) to be one of several lncRNAs whose expression was significantly altered following HIV-1 infection. The regulation of NRON expression during the HIV-1 life cycle was complex; its levels were reduced by the early viral accessory protein Nef and increased by the late protein Vpu. Consequently, Nef and Vpu also modulated activity of the transcription factor NFAT. The knockdown of NRON enhanced HIV-1 replication through increased activity of NFAT and the viral LTR. Using siRNA-mediated NFAT knockdown, we show the effects of NRON on HIV-1 replication to be mediated by NFAT, and the viral Nef and Vpu proteins to modulate NFAT activity through their effects on NRON. These findings add the lncRNA, NRON to the vast repertoire of host factors utilized by HIV for infection and persistence.
    Scientific Reports 03/2015; 5:8639. DOI:10.1038/srep08639 · 5.08 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014