Article

Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry.

Department of Applied Chemistry, East China Institute of Technology, Fuzhou, 344000 PR China.
Analytical Chemistry (Impact Factor: 5.7). 05/2009; 81(7):2426-36. DOI: 10.1021/ac900063u
Source: PubMed

ABSTRACT Without any sample pretreatment, trace amounts of melamine in various milk products were rapidly detected noting the characteristic fragments (i.e., m/z 110, 85, and 60) in the MS/MS spectrum of protonated melamine molecules (m/z 127) recorded by using surface desorption atmospheric pressure chemical ionization mass spectrometry. Signal responses of the most abundant ionic fragment (m/z 85) of protonated melamine were well correlated with the amounts of melaime in milk products, showing a dynamic range about 5 orders of magnitude. The limit of detection (LOD) was found to be 3.4 x 10(-15) g/mm(2) (S/N = 3) for the detection of pure melamine deposited on the paper surface, which was much lower than that for detection of melamine in powdered milk (1.6 x 10(-11) g/mm(2), S/N = 3) or liquid milk (1.3 x 10(-12) g/mm(2), S/N = 3). The significant difference in LOD was ascribed to the relatively strong molecular interactions between melamine and the matrix such as proteins in the milk products. As demonstrated using desorption electrospray ionization (DESI) for melamine detection, weakening the molecular interaction between analytes and proteins is proposed as a general strategy to improve the sensitivity of ambient mass spectrometry for direct detection of analytes bound in protein matrixes. The relative standard deviation (RSD) and the recovery of this method were found to be 5.2 approximately 11.9% and 87 approximately 113%, respectively, for the detection of melamine in milk products. A single sample analysis was completed within a few seconds, providing a particularly convenient way to rapidly screen melamine presence in milk products.

0 Bookmarks
 · 
192 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kjeldahl method and four classic spectrophotometric methods (Biuret, Lowry, Bradford and Markwell) were applied to evaluate the protein content of samples of UHT whole milk deliberately adulterated with melamine, ammonium sulphate or urea, which can be used to defraud milk protein and whey contents. Compared with the Kjeldahl method, the response of the spectrophotometric methods was unaffected by the addition of the nitrogen compounds to milk or whey. The methods of Bradford and Markwell were most robust and did not exhibit interference subject to composition. However, the simultaneous interpretation of results obtained using these methods with those obtained using the Kjeldahl method indicated the addition of nitrogen-rich compounds to milk and/or whey. Therefore, this work suggests a combination of results of Kjeldahl and spectrophotometric methods should be used to screen for milk adulteration by these compounds.
    Food Chemistry 12/2013; 141(4):3649-55. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A hollow gold (HG) chip with high surface-enhanced Raman scattering (SERS) capability was fabricated and used to monitor the adulteration of milk with melamine. This chip was fabricated with self-assembled hollow gold nanospheres (HGNs) on glass wafers through electrostatic interaction. There are two important advantages for the use of this HG chip as a detection platform. First, HGNs show a strong SERS enhancement from individual particles due to their capability to localize the electromagnetic fields around the pinholes in hollow shells. Second, the HG chip improves the limit of detection through the enrichment effect. The characteristic SERS peak of melamine was used to distinguish it from other kinds of proteins or amino acids, and its intensity was used to monitor the percentage of melamine in milk. With its simple detection procedure (no pretreatment or separation steps), decreased processing time and low detection limit, this HG chip shows a strong potential for broad applications in melamine detection from real samples.
    Talanta 01/2014; 122:80–84. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev.
    Mass Spectrometry Reviews 03/2014; · 7.74 Impact Factor

Full-text

View
0 Downloads
Available from