Article

Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy.

Molecular Neurotherapy and Imaging Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Boston, MA 02114, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2009; 106(12):4822-7. DOI: 10.1073/pnas.0806647106
Source: PubMed

ABSTRACT The poor prognosis of patients with aggressive and invasive cancers combined with toxic effects and short half-life of currently available treatments necessitate development of more effective tumor selective therapies. Mesenchymal stem cells (MSCs) are emerging as novel cell-based delivery agents; however, a thorough investigation addressing their therapeutic potential and fate in different cancer models is lacking. In this study, we explored the engineering potential, fate, and therapeutic efficacy of human MSCs in a highly malignant and invasive model of glioblastoma. We show that engineered MSC retain their "stem-like" properties, survive longer in mice with gliomas than in the normal brain, and migrate extensively toward gliomas. We also show that MSCs are resistant to the cytokine tumor necrosis factor apoptosis ligand (TRAIL) and, when engineered to express secreted recombinant TRAIL, induce caspase-mediated apoptosis in established glioma cell lines as well as CD133-positive primary glioma cells in vitro. Using highly malignant and invasive human glioma models and employing real-time imaging with correlative neuropathology, we demonstrate that MSC-delivered recombinant TRAIL has profound anti-tumor effects in vivo. This study demonstrates the efficacy of diagnostic and therapeutic MSC in preclinical glioma models and forms the basis for developing stem cell-based therapies for different cancers.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the increasing recognition that stem cells play vital roles in the formation, maintenance, and potential targeted treatment of brain tumors, there has been an exponential increase in basic laboratory and translational research on these cell types. However, there are several different classes of stem cells germane to brain cancer, each with distinct capabilities and functions. In this perspective, we discuss the types of stem cells relevant to brain tumor pathogenesis, and suggest a nomenclature for future preclinical and clinical investigation.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions.
    Advanced Drug Delivery Reviews 12/2014; DOI:10.1016/j.addr.2014.12.003 · 12.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin cancers are by far the most common malignancy of humans, particularly in the white population. The growing incidence of cutaneous malignancies has heralded the need for multiple treatment options. Although surgical modalities remain the mainstay of treatment, new research and fresh innovation are still required to reduce morbidity and mortality. Approaches for skin cancer may pass through new technological methods instead of new molecules. The first part of this paper provides a review of the state of the art regarding skin cancer disease as well as epidemiology data. Then, it describes the gold standards of the current recommended therapies worldwide and the actual needs of these patients. This is the first paper that highlights the novel and future therapeutic perspectives for the treatment of skin malignancies, new therapeutic agents and promising technological approaches, from nanotechnology to immunotherapy.
    Cancer Letters 02/2015; 357(1). DOI:10.1016/j.canlet.2014.11.001 · 5.02 Impact Factor

Full-text

Download
34 Downloads
Available from
May 30, 2014