Article

Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy.

Molecular Neurotherapy and Imaging Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School Boston, MA 02114, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2009; 106(12):4822-7. DOI: 10.1073/pnas.0806647106
Source: PubMed

ABSTRACT The poor prognosis of patients with aggressive and invasive cancers combined with toxic effects and short half-life of currently available treatments necessitate development of more effective tumor selective therapies. Mesenchymal stem cells (MSCs) are emerging as novel cell-based delivery agents; however, a thorough investigation addressing their therapeutic potential and fate in different cancer models is lacking. In this study, we explored the engineering potential, fate, and therapeutic efficacy of human MSCs in a highly malignant and invasive model of glioblastoma. We show that engineered MSC retain their "stem-like" properties, survive longer in mice with gliomas than in the normal brain, and migrate extensively toward gliomas. We also show that MSCs are resistant to the cytokine tumor necrosis factor apoptosis ligand (TRAIL) and, when engineered to express secreted recombinant TRAIL, induce caspase-mediated apoptosis in established glioma cell lines as well as CD133-positive primary glioma cells in vitro. Using highly malignant and invasive human glioma models and employing real-time imaging with correlative neuropathology, we demonstrate that MSC-delivered recombinant TRAIL has profound anti-tumor effects in vivo. This study demonstrates the efficacy of diagnostic and therapeutic MSC in preclinical glioma models and forms the basis for developing stem cell-based therapies for different cancers.

Download full-text

Full-text

Available from: Jeroen A.J.M. Van de Water, Jul 01, 2015
0 Followers
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications.
    Brain 04/2015; 138(6). DOI:10.1093/brain/awv094 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell viability and cell migration capacities are critical parameters for cell culture-related studies. It is essential to monitor the dynamic changes of cell properties under various co-culture conditions to our better understanding of their behaviours and characteristics. The real time cell analyzer (RTCA, xCELLigence, Roche) is an impedance-based technology that can be used for label-free and real-time monitoring of cell properties, such as cell adherence, proliferation, migration and cytotoxicity. The practicality of this system has been proven in our recent cancer studies. In the present method, we intend to use co-cultures of pancreatic cancer cells (HP62) and mesenchymal stem cells to describe in detail, the procedures and benefits of RTCA.
    Cytotechnology 01/2014; 67(2). DOI:10.1007/s10616-014-9692-5 · 1.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell engineering, the manipulation and control of cells, harnesses tremendous potential for diagnosis and therapy of disease; however, it is still challenging to impart multifunctionalization onto stem cells to achieve both. Here we describe a mesenchymal stem cell (MSC)-based multifunctional platform to target orthotopic glioblastoma by integrating the tumor targeted delivery of mesenchymal stem cells and the multimodal imaging advantage of mesoporous silica nanoparticles (MSNs). Rapid cellular uptake, long retention time and stability of particles exemplify the potential that the combination of MSNs and MSCs has as a stem cell-based multifunctional platform. Using such a platform, we verified tumor-targeted delivery of MSCs by in vivo multimodal imaging in an orthotopic U87MG glioblastoma model, displaying higher tumor uptake than particles without MSCs. As a proof-of-concept, this MSC platform opens a new vision for multifunctional applications of cell products by combining the superiority of stem cells and nanoparticles for actively targeted delivery.
    Biomaterials 12/2012; DOI:10.1016/j.biomaterials.2012.11.032 · 8.31 Impact Factor