Identifying Heritable Brain Phenotypes in an Extended Pedigree of Vervet Monkeys

Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 04/2009; 29(9):2867-75. DOI: 10.1523/JNEUROSCI.5153-08.2009
Source: PubMed

ABSTRACT The area and volume of brain structural features, as assessed by high-resolution three-dimensional magnetic resonance imaging (MRI), are among the most heritable measures relating to the human CNS. We have conducted MRI scanning of all available monkeys >2 years of age (n = 357) from the extended multigenerational pedigree of the Vervet Research Colony (VRC). Using a combination of automated and manual segmentation we have quantified several correlated but distinct brain structural phenotypes. The estimated heritabilities (h(2)) for these measures in the VRC are higher than those reported previously for such features in humans or in other nonhuman primates: total brain volume (h(2) = 0.99, SE = 0.06), cerebral volume (h(2) = 0.98, SE = 0.06), cerebellar volume (h(2) = 0.86, SE = 0.09), hippocampal volume (h(2) = 0.95, SE = 0.07) and corpus callosum cross-sectional areas (h(2) = 0.87, SE = 0.07). These findings indicate that, in the controlled environment and with the inbreeding structure of the VRC, additive genetic factors account for almost all of the observed variance in brain structure, and suggest the potential of the VRC for genetic mapping of quantitative trait loci underlying such variance.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chimpanzees are well known for their tool using abilities. Numerous studies have documented variability in tool use among chimpanzees and the role that social learning and other factors play in their development. There are also findings on hand use in both captive and wild chimpanzees; however, less understood are the potential roles of genetic and non-genetic mechanisms in determining individual differences in tool use skill and laterality. Here, we examined heritability in tool use skill and handedness for a probing task in a sample of 243 captive chimpanzees. Quantitative genetic analysis, based on the extant pedigrees, showed that overall both tool use skill and handedness were significantly heritable. Significant heritability in motor skill was evident in two genetically distinct populations of apes, and between two cohorts that received different early social rearing experiences. We further found that motor skill decreased with age and that males were more commonly left-handed than females. Collectively, these data suggest that though non-genetic factors do influence tool use performance and handedness in chimpanzees, genetic factors also play a significant role, as has been reported in humans. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
    Proceedings of the Royal Society B: Biological Sciences 02/2015; 282(1800). DOI:10.1098/rspb.2014.1223 · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 10/2014; 34(43):14443-54. DOI:10.1523/JNEUROSCI.3037-14.2014 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Twenty years ago, Ringo and colleagues proposed that maintaining absolute connectivity in larger compared with smaller brains is computationally inefficient due to increased conduction delays in transcallosal information transfer and expensive with respect to the brain mass needed to establish these additional connections. Therefore, they postulated that larger brains are relatively stronger connected intrahemispherically and smaller brains interhemispherically, resulting in stronger functional lateralization in larger brains. We investigated neuronal interconnections in 138 large and small human brains using diffusion tensor imaging-based fiber tractography. We found a significant interaction between brain size and the type of connectivity. Structural intrahemispheric connectivity is stronger in larger brains, whereas interhemispheric connectivity is only marginally increased in larger compared with smaller brains. Although brain size and gender are confounded, this effect is gender-independent. Additionally, the ratio of interhemispheric to intrahemispheric connectivity correlates inversely with brain size. The hypothesis of neuronal interconnectivity as a function of brain size might account for shorter and more symmetrical interhemispheric transfer times in women and for empirical evidence that visual and auditory processing are stronger lateralized in men. The hypothesis additionally shows that differences in interhemispheric and intrahemispheric connectivity are driven by brain size and not by gender, a finding contradicting a recently published study. Our findings are also compatible with the idea that the more asymmetric a region is, the smaller the density of interhemispheric connections, but the larger the density of intrahemispheric connections. The hypothesis represents an organization principle of the human connectome that might be applied also to non-human animals as suggested by our cross-species comparison.
    Frontiers in Human Neuroscience 11/2014; 8. DOI:10.3389/fnhum.2014.00915 · 2.90 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014