Regulation of rDNA stability by sumoylation.

Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
DNA Repair (Impact Factor: 3.36). 05/2009; 8(4):507-16. DOI: 10.1016/j.dnarep.2009.01.015
Source: PubMed

ABSTRACT Repair of DNA lesions by homologous recombination relies on the copying of genetic information from an intact homologous sequence. However, many eukaryotic genomes contain repetitive sequences such as the ribosomal gene locus (rDNA), which poses a risk for illegitimate recombination. Therefore, the eukaryotic cell has evolved mechanisms to favor equal sister chromatid exchange (SCE) and suppress unequal SCE, single-strand annealing and break-induced replication. In the budding yeast Saccharomyces cerevisiae, the tight regulation of homologous recombination at the rDNA locus is dependent on the Smc5-Smc6 complex and sumoylation of Rad52, which directs DNA double-strand breaks in the rDNA to relocalize from within the nucleolus to the nucleoplasm before association with the recombination machinery. The relocalization before repair is important for maintaining rDNA stability. The focus of this review is the regulation of recombinational DNA repair at the rDNA locus by sumoylation and the Smc5-Smc6 complex in S. cerevisiae.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Homologous recombination (HR)-mediated instability of the repetitively organized ribosomal DNA (rDNA) has been proposed as a mediator of cell senescence in yeast triggering the DNA damage response. High individual variability in the content of human rDNA suggests that this genomic region remained relatively unstable throughout evolution. Therefore, quantitative real time PCR was used to determine the genomic content of rDNA in post mortem samples of parietal cortex from 14 young- and 9 elderly individuals with no diagnosis of a chronic neurodegenerative/neurological disease. In addition, rDNA content in that brain region was compared between 10 age-matched control individuals and 10 patients with dementia with Lewy bodies (DLB) which involves neurodegeneration of the cerebral cortex. Probing rRNA-coding regions of rDNA revealed no effects of aging on the rDNA content. Elevated rDNA content was observed in DLB. Conversely, in the DLB pathology-free cerebellum, lower genomic content of rDNA was present in the DLB group. In the parietal cortex, such a DLB-associated instability of rDNA was not accompanied by any major changes of CpG methylation of the rDNA promoter. As increased cerebro-cortical rDNA content was previously reported in Alzheimer's diseases, neurodegeneration appears to be associated with instability of rDNA. The hypothetical origins and consequences of this phenomenon are discussed including possibilities that the DNA damage-induced recombination destabilizes rDNA and that differential content of rDNA affects heterochromatin formation, gene expression and/or DNA damage response. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
    Biochimica et Biophysica Acta 01/2014; 1842(6). DOI:10.1016/j.bbadis.2013.12.012 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Significance: An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected non-canonical functions associated with RNA metabolism in specific subcellular districts (e.g. nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. Recent Advances: Following nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. Critical Issues: A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair pathway, such as APE1. In this review the role of the nucleolus and of the non-canonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. Future Directions: A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a prior life in the early RNA world.
    Antioxidants & Redox Signaling 07/2013; DOI:10.1089/ars.2013.5491 · 8.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arbuscular mycorrhizal fungi (phylum Glomeromycota) are among the oldest and most successful symbionts of land plants. With no evidence of sexual reproduction, their evolutionary success is inconsistent with the prediction that asexual taxa are vulnerable to extinction due to accumulation of deleterious mutations. To explore why Glomeromycota defy this prediction, we studied ribosomal RNA (rRNA) gene evolution in the Claroideoglomus lineage and estimated effective population size, N(e) , in C. etunicatum. We found that rRNA genes of these fungi exhibit unusual and complex patterns of molecular evolution. In C. etunicatum, these patterns can be collectively explained by an unexpectedly large N(e) combined with imperfect genome-wide and population-level rRNA gene repeat homogenization. The mutations accumulated in rRNA gene sequences indicate that natural selection is effective at purging deleterious mutations in the Claroideoglomus lineage, which is also consistent with the large N(e) of C. etunicatum. We propose that in the near absence of recombination, asexual reproduction involving massively multinucleate spores typical for Glomeromycota is responsible for the improved efficacy of selection relative to drift. We postulate that large effective population sizes contribute to the evolutionary longevity of Glomeromycota.
    Evolution 01/2013; 67(1):207-24. DOI:10.1111/j.1558-5646.2012.01747.x · 4.66 Impact Factor