Hematopoietic and Endothelial Differentiation of Human Induced Pluripotent Stem Cells

Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 53715, USA.
Stem Cells (Impact Factor: 6.52). 04/2009; 27(3):559-67. DOI: 10.1634/stemcells.2008-0922
Source: PubMed


Induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity for modeling of human diseases in vitro, as well as for developing novel approaches for regenerative therapy based on immunologically compatible cells. In this study, we employed an OP9 differentiation system to characterize the hematopoietic and endothelial differentiation potential of seven human iPSC lines obtained from human fetal, neonatal, and adult fibroblasts through reprogramming with POU5F1, SOX2, NANOG, and LIN28 and compared it with the differentiation potential of five human embryonic stem cell lines (hESC, H1, H7, H9, H13, and H14). Similar to hESCs, all iPSCs generated CD34(+)CD43(+) hematopoietic progenitors and CD31(+)CD43(-) endothelial cells in coculture with OP9. When cultured in semisolid media in the presence of hematopoietic growth factors, iPSC-derived primitive blood cells formed all types of hematopoietic colonies, including GEMM colony-forming cells. Human induced pluripotent cells (hiPSCs)-derived CD43(+) cells could be separated into the following phenotypically defined subsets of primitive hematopoietic cells: CD43(+)CD235a(+)CD41a(+/-) (erythro-megakaryopoietic), lin(-)CD34(+)CD43(+)CD45(-) (multipotent), and lin(-)CD34(+)CD43(+)CD45(+) (myeloid-skewed) cells. Although we observed some variations in the efficiency of hematopoietic differentiation between different hiPSCs, the pattern of differentiation was very similar in all seven tested lines obtained through reprogramming of human fetal, neonatal, or adult fibroblasts with three or four genes. Although several issues remain to be resolved before iPSC-derived blood cells can be administered to humans for therapeutic purposes, patient-specific iPSCs can already be used for characterization of mechanisms of blood diseases and for identification of molecules that can correct affected genetic networks.

1 Follower
36 Reads
  • Source
    • "Induced pluripotent stem cells (iPSCs) are a novel cell type, derived from somatic cell reprogramming via overexpression of exogenous transcription factors [3]. These reprogrammed pluripotent cells are then capable of being differentiated into many different mature cell types, including vascular endothelial cells (iPSC-ECs) [4] [5] [6]. Similarly, induced endothelial cells (iECs) can be produced by transdifferentiating adult fibroblasts directly to endothelial cells, bypassing the pluripotent stem cell intermediate [7] [8]. "

  • Source
    • "Once the cells have returned to a pluripotent state the cells can then be re-differentiated into endothelial and associated mural cells. Choi et al. were able to differentiate seven human iPS cell lines into endothelial (CD31+, CD34-) cells [61]. The iPS-derived endothelial cells were shown to successfully form capillary-like structures on growth factor reduced matrigel in 2D. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications.
    Vascular Cell 06/2014; 6(1):13. DOI:10.1186/2045-824X-6-13
  • Source
    • "iPSCs alleviate ethical concerns tied to usage of ESCs, in addition to representing a possible autologous source for individualized treatments. It is well recognized now that iPSCs derived from a patient’s own somatic cells represent an attractive cell source, having the potential to differentiate into various cell types including neurons [42,43], cardiomyocytes [44,45], and cells of a hematopoietic lineage [46]. Of relevance to the proposed work are studies demonstrating the ability to promote differentiation of mouse or human iPSCs into chondrocyte-like cells, facilitated by supplemental growth factors that include bone morphogenetic proteins (BMPs) or TGFs [47-49]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A large percentage of the population may be expected to experience painful symptoms or disability associated with intervertebral disc (IVD) degeneration - a condition characterized by diminished integrity of tissue components. Great interest exists in the use of autologous or allogeneic cells delivered to the degenerated IVD to promote matrix regeneration. Induced pluripotent stem cells (iPSCs), derived from a patient's own somatic cells, have demonstrated their capacity to differentiate into various cell types although their potential to differentiate into an IVD cell has not yet been demonstrated. The overall objective of this study was to assess the possibility of generating iPSC-derived nucleus pulposus (NP) cells in a mouse model, a cell population that is entirely derived from notochord. This study employed magnetic activated cell sorting (MACS) to isolate a CD24(+) iPSC subpopulation. Notochordal cell-related gene expression was analyzed in this CD24(+) cell fraction via real time RT-PCR. CD24(+) iPSCs were then cultured in a laminin-rich culture system for up to 28 days, and the mouse NP phenotype was assessed by immunostaining. This study also focused on producing a more conducive environment for NP differentiation of mouse iPSCs with addition of low oxygen tension and notochordal cell conditioned medium (NCCM) to the culture platform. iPSCs were evaluated for an ability to adopt an NP-like phenotype through a combination of immunostaining and biochemical assays. Results demonstrated that a CD24(+) fraction of mouse iPSCs could be retrieved and differentiated into a population that could synthesize matrix components similar to that in native NP. Likewise, the addition of a hypoxic environment and NCCM induced a similar phenotypic result. In conclusion, this study suggests that mouse iPSCs have the potential to differentiate into NP-like cells and suggests the possibility that they may be used as a novel cell source for cellular therapy in the IVD.
    PLoS ONE 09/2013; 8(9):e75548. DOI:10.1371/journal.pone.0075548 · 3.23 Impact Factor
Show more

Similar Publications


36 Reads
Available from