A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography.

1Department of Biomedical Engineering, Stony Brook University, NY, Stony Brook, NY 11794, USA.
Optics Express (Impact Factor: 3.53). 04/2009; 17(5):3951-63. DOI: 10.1364/OE.17.003951
Source: PubMed

ABSTRACT A digital frequency ramping method (DFRM) is proposed to improve the signal-to-noise ratio (SNR) of Doppler flow imaging in Fourier-domain optical coherence tomography (FDOCT). To examine the efficacy of DFRM for enhancing flow detection, computer simulation and tissue phantom study were conducted for phase noise reduction and flow quantification. In addition, the utility of this technique was validated in our in vivo clinical bladder imaging with endoscopic FDOCT. The Doppler flow images reconstructed by DFRM were compared with the counterparts by traditional Doppler FDOCT. The results demonstrate that DFRM enables real-time Doppler FDOCT imaging at significantly enhanced sensitivity without hardware modification, thus rendering it uniquely suitable for endoscopic subsurface blood flow imaging and diagnosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed.
    Chinese Optics Letters 01/2013; 11(1):11702. DOI:10.3788/COL201311.011702 · 1.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible.
    Biomedical Optics Express 09/2014; 5(9). DOI:10.1364/BOE.5.003217 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is known that a remaining challenge for functional brain imaging is to distinguish the coupling and decoupling effects among neuronal activity, cerebral metabolism, and vascular hemodynamics, which highlights the need for new tools to enable simultaneous measures of these three properties in vivo. Here, we review current neuroimaging techniques and their prospects and potential limitations for tackling this challenge. We then report a novel dual-wavelength laser speckle imaging (DW-LSI) tool developed in our labs that enables simultaneous imaging of cerebral blood flow (CBF), cerebral blood volume, and tissue hemoglobin oxygenation, which allows us to monitor neurovascular and tissue metabolic activities at high spatiotemporal resolutions over a relatively large field of view. Moreover, we report digital frequency ramping Doppler optical coherence tomography (DFR-OCT) that allows for quantitative 3D imaging of the CBF network in vivo. In parallel, we review calcium imaging techniques to track neuronal activity, including intracellular calcium approach using Rhod2 fluorescence technique that we develop to detect neuronal activity in vivo. We report a new multimodality imaging platform that combines DW-LSI, DFR-OCT, and calcium fluorescence imaging for simultaneous detection of cortical hemodynamics, cerebral metabolism, and neuronal activities of the animal brain in vivo, as well as its integration with microprobes for imaging neuronal function in deep brain regions in vivo. Promising results of in vivo animal brain functional studies suggest the potential of this multimodality approach for future awake animal and behavioral studies.
    Reviews in the neurosciences 11/2011; 22(6):695-709. DOI:10.1515/RNS.2011.053 · 3.31 Impact Factor


1 Download
Available from