Article

A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography.

1Department of Biomedical Engineering, Stony Brook University, NY, Stony Brook, NY 11794, USA.
Optics Express (Impact Factor: 3.53). 04/2009; 17(5):3951-63. DOI: 10.1364/OE.17.003951
Source: PubMed

ABSTRACT A digital frequency ramping method (DFRM) is proposed to improve the signal-to-noise ratio (SNR) of Doppler flow imaging in Fourier-domain optical coherence tomography (FDOCT). To examine the efficacy of DFRM for enhancing flow detection, computer simulation and tissue phantom study were conducted for phase noise reduction and flow quantification. In addition, the utility of this technique was validated in our in vivo clinical bladder imaging with endoscopic FDOCT. The Doppler flow images reconstructed by DFRM were compared with the counterparts by traditional Doppler FDOCT. The results demonstrate that DFRM enables real-time Doppler FDOCT imaging at significantly enhanced sensitivity without hardware modification, thus rendering it uniquely suitable for endoscopic subsurface blood flow imaging and diagnosis.

0 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare, in detail, the phase-resolved color Doppler (PRCD), phase-resolved Doppler variance (PRDV) and intensity-based Doppler variance (IBDV) methods. All the methods are able to quantify flow speed when the flow rate is within a certain range, which is dependent on the adjacent A-line time interval. While PRCD is most sensitive when the flow direction is along the probing beam, PRDV and IBDV can be used to measure the flow when the flow direction is near perpendicular to the probing beam. However, the values of PRDV and IBDV are Doppler angle-dependent when the Doppler angle is above a certain threshold. The sensitivity of all the methods can be improved by increasing the adjacent A-line time interval while still maintaining a high sampling density level. We also demonstrate for the first time, to the best of our knowledge, high resolution inter-frame PRDV method. In applications where mapping vascular network such as angiogram is more important than flow velocity quantification, IBDV and PRDV images show better contrast than PRCD images. The IBDV and PRDV show very similar characteristics and demonstrate comparable results for vasculature mapping. However, the IBDV is less sensitive to bulk motion and with less post-processing steps, which is preferred for fast data processing situations. In vivo imaging of mouse brain with intact skull and human skin with the three methods were demonstrated and the results were compared. The IBDV method was found to be able to obtain high resolution image with a relative simple processing procedure.
    Biomedical Optics Express 10/2012; 3(10):2669-80. DOI:10.1364/BOE.3.002669 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed.
    Chinese Optics Letters 01/2013; 11(1):11702. DOI:10.3788/COL201311.011702 · 1.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical coherence Doppler tomography (ODT) is a promising neurotechnique that permits 3D imaging of the cerebral blood flow (CBF) network; however, quantitative CBF velocity (CBFv) imaging remains challenging. Here we present a simple phase summation method to enhance slow capillary flow detection sensitivity without sacrificing dynamic range for fast flow and vessel tracking to improve angle correction for absolute CBFv quantification. Flow phantom validation indicated that the CBFv quantification accuracy increased from 15% to 91% and the coefficient of variation (CV) decreased 9.3-fold; in vivo mouse brain validation showed that CV decreased 4.4-/10.8- fold for venular/arteriolar flows. ODT was able to identify cocaine-elicited microischemia and quantify CBFv disruption in branch vessels and capillaries that otherwise would have not been possible.
    Biomedical Optics Express 09/2014; 5(9). DOI:10.1364/BOE.5.003217 · 3.50 Impact Factor

Preview

Download
1 Download
Available from