Article

Role of hepatic STAT3 in the regulation of lipid metabolism.

Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
The Kobe journal of medical sciences 02/2008; 54(4):E200-8.
Source: PubMed

ABSTRACT Regulation of hepatic gene expression is largely responsible for the control of nutrient metabolism. We previously showed that the transcription factor STAT3 regulates glucose homeostasis by suppressing the expression of gluconeogenic genes in the liver. However, the role of STAT3 in the control of lipid metabolism has remained unknown. We have now investigated the effects of hepatic overexpression of STAT3, achieved by adenovirus-mediated gene transfer, on glucose and lipid metabolism in insulin-resistant diabetic mice. Forced expression of STAT3 reduced blood glucose and plasma insulin concentrations as well as the hepatic abundance of mRNA for phosphoenolpyruvate carboxykinase. However, it also increased the plasma levels of triglyceride and total cholesterol without affecting those of low density lipoprotein- or high density lipoprotein-cholesterol. The hepatic abundance of mRNAs for fatty acid synthase and acetyl-CoA carboxylase, both of which catalyze the synthesis of fatty acids, was increased by overexpression of STAT3, whereas that of mRNAs for sterol regulatory element-binding proteins 1a, 1c, or 2 was unaffected. Moreover, the amount of mRNA for acyl-CoA oxidase, which contributes to beta-oxidation, was decreased by forced expression of STAT3. These results indicate that forced activation of STAT3 signaling in the liver of insulin-resistant diabetic mice increased the circulating levels of atherogenic lipids through changes in the hepatic expression of genes involved in lipid metabolism. Furthermore, these alterations in hepatic gene expression likely occurred through a mechanism independent of sterol regulatory element-binding proteins.

2 Followers
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternal obesity and gestational diabetes (GDM) are conditions associated with fetal overgrowth and excessive fat accumulation in the fetus, implicating an increased placental nutrient transfer in these pregnancies. Obese and GDM mothers have altered metabolism and hormone levels, including elevation of maternal circulatory lipids and pro-inflammatory cytokines. We tested the hypothesis that interleukin (IL)-6 and tumor necrosis factor (TNF)-α stimulate placental fatty acid transport, as these pro-inflammatory cytokines have been shown to affect lipid metabolism in other tissues. In cultured primary human trophoblast cells IL-6, but not TNF-α, stimulated fatty acid accumulation, as measured by BODIPY fluorescence. The increased fatty acid accumulation could not be explained by an increased expression of key components in placental fatty acid transport, such as adipophilin, fatty acid transport protein (FATP)1, FATP4, or lipoprotein lipase. In a cohort of lean and overweight/obese pregnant women, increasing maternal third trimester IL-6 plasma concentrations correlated with decreasing placental lipoprotein lipase activity. However, as no effect on lipoprotein lipase activity was observed in cultured trophoblast cells after exposure to either IL-6 or TNF-α, the correlation between maternal circulatory IL-6 levels and placental lipoprotein lipase activity at term is unlikely to represent a cause-and-effect relationship. In conclusion, high levels of IL-6 stimulate trophoblast fatty acid accumulation, which could contribute to an excessive nutrient transfer in conditions associated with elevated maternal IL-6 such as obesity and gestational diabetes.
    Placenta 02/2011; 32(2):121-7. DOI:10.1016/j.placenta.2010.10.012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt signaling and interleukin-6 (IL-6)-instigated JAK/STAT3-signaling pathways in the liver inhibit the expression of gluconeogenic genes to decrease hepatic glucose output. The insulin receptor (IR) and JAK1 tyrosine kinases and STAT3 can serve as direct substrates for the T-cell protein tyrosine phosphatase (TCPTP). Homozygous TCPTP-deficiency results in perinatal lethality prohibiting any informative assessment of TCPTP's role in glucose homeostasis. Here we have used Ptpn2+/- mice to investigate TCPTP's function in glucose homeostasis. We analyzed insulin sensitivity and gluconeogenesis in chow versus high-fat-fed (HFF) Ptpn2+/- and Ptpn2+/+ mice and insulin and IL-6 signaling and gluconeogenic gene expression in Ptpn2+/- and Ptpn2+/+ hepatocytes. HFF Ptpn2+/- mice exhibited lower fasted blood glucose and decreased hepatic glucose output as determined in hyperinsulinemic euglycemic clamps and by the decreased blood glucose levels in pyruvate tolerance tests. The reduced hepatic glucose output coincided with decreased expression of the gluconeogenic genes G6pc and Pck1 and enhanced hepatic STAT3 phosphorylation and PI3K/Akt signaling in the fasted state. Insulin-induced IR-beta-subunit Y1162/Y1163 phosphorylation and PI3K/Akt signaling and IL-6-induced STAT3 phosphorylation were also enhanced in isolated Ptpn2+/- hepatocytes. The increased insulin and IL-6 signaling resulted in enhanced suppression of G6pc and Pck1 mRNA. Liver TCPTP antagonises both insulin and STAT3 signaling pathways to regulate gluconeogenic gene expression and hepatic glucose output.
    Diabetes 08/2010; 59(8):1906-14. DOI:10.2337/db09-1365
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was to examine the possible role of AMP-activated protein kinase (AMPK) in the regulation of the inflammatory response induced by cytokine action in human liver cells. IL-6-stimulated expression of the genes for acute-phase response markers serum amyloid A (SAA1, SAA2) and haptoglobin (HP) in the human hepatocarcinoma cell line HepG2 were quantified after modulation of AMPK activity by pharmacological agonists (5-amino-4-imidazole-carboxamideriboside [AICAR], metformin) or by using small interfering (si) RNA transfection. The intracellular signalling pathway mediating the effect of AMPK on IL-6-stimulated acute-phase marker expression was characterised by assessing the phosphorylation levels of the candidate protein signal transducer and activator of transcription 3 (STAT3) in response to AMPK agonists. AICAR and metformin markedly blunt the IL-6-stimulated expression of SAA cluster genes as well as of haptoglobin in a dose-dependent manner. Moreover, the repression of AMPK activity by siRNA significantly reversed the inhibition of SAA expression by both AICAR and metformin, indicating that the effect of the agonists is dependent on AMPK. For the first time we show that AMPK appears to regulate IL-6 signalling by directly inhibiting the activation of the main downstream target of IL-6, STAT3. We provide evidence for a key function of AMPK in suppression of the acute-phase response caused by the action of IL-6 in liver, suggesting that AMPK may act as an intracellular link between chronic low-grade inflammation and metabolic regulation in peripheral metabolic tissues.
    Diabetologia 11/2010; 53(11):2406-16. DOI:10.1007/s00125-010-1856-z

Preview

Download
4 Downloads
Available from