Identification of beryllium-dependent peptides recognized by CD4 T cells in chronic beryllium disease

Department of Medicine, University of Colorado, Denver, Aurora, CO 80045.
Journal of Experimental Medicine (Impact Factor: 13.91). 06/2013; 210(7). DOI: 10.1084/jem.20122426
Source: PubMed

ABSTRACT Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4(+) T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP-restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4(+) T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2-mimotope and HLA-DP2-plexin A4 tetramers detected high frequencies of CD4(+) T cells specific for these ligands in all HLA-DP2(+) CBD patients tested. Thus, our findings identify the first ligand for a CD4(+) T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade.
    PLoS ONE 11/2014; 9(11):e111604. DOI:10.1371/journal.pone.0111604 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Which elements are essential for human life? Here we make an element-by-element journey through the periodic table and attempt to assess whether elements are essential or not, and if they are, whether there is a relevant code for them in the human genome. There are many difficulties such as the human biochemistry of several so-called essential elements is not well understood, and it is not clear how we should classify elements that are involved in the destruction of invading microorganisms, or elements which are essential for microorganisms with which we live in symbiosis. In general, genes do not code for the elements themselves, but for specific chemical species, i.e. for the element, its oxidation state, type and number of coordinated ligands, and the coordination geometry. Today, the biological periodic table is in a position somewhat similar to Mendeleev's chemical periodic table of 1869: there are gaps and we need to do more research to fill them. The periodic table also offers potential for novel therapeutic and diagnostic agents, based on not only essential elements, but also non-essential elements, and on radionuclides. Although the potential for inorganic chemistry in medicine was realized more than 2000 years ago, this area of research is still in its infancy. Future advances in the design of inorganic drugs require more knowledge of their mechanism of action, including target sites and metabolism. Temporal speciation of elements in their biological environments at the atomic level is a major challenge, for which new methods are urgently needed.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 03/2015; 373(2037). DOI:10.1098/rsta.2014.0182 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aluminum oxyhydroxide (alum) is a crystaline compound widely used as an immunologic adjuvant of vaccines. Concerns linked to the use of alum particles emerged following recognition of their causative role in the so-called macrophagic myofasciitis (MMF) lesion detected in patients with myalgic encephalomyelitis/chronic fatigue/syndrome. MMF revealed an unexpectedly long-lasting biopersistence of alum within immune cells in presumably susceptible individuals, stressing the previous fundamental misconception of its biodisposition. We previously showed that poorly biodegradable aluminum-coated particles injected into muscle are promptly phagocytozed in muscle and the draining lymph nodes, and can disseminate within phagocytic cells throughout the body and slowly accumulate in brain. This strongly suggests that long-term adjuvant biopersistence within phagocytic cells is a prerequisite for slow brain translocation and delayed neurotoxicity. The understanding of basic mechanisms of particle biopersistence and brain translocation represents a major health challenge, since it could help to define susceptibility factors to develop chronic neurotoxic damage. Biopersistence of alum may be linked to its lysosome-destabilizing effect, which is likely due to direct crystal-induced rupture of phagolysosomal membranes. Macrophages that continuously perceive foreign particles in their cytosol will likely reiterate, with variable interindividual efficiency, a dedicated form of autophagy (xenophagy) until they dispose of alien materials. Successful compartmentalization of particles within double membrane autophagosomes and subsequent fusion with repaired and re-acidified lysosomes will expose alum to lysosomal acidic pH, the sole factor that can solubilize alum particles. Brain translocation of alum particles is linked to a Trojan horse mechanism previously described for infectious particles (HIV, HCV), that obeys to CCL2 signaling the major inflammatory monocyte chemoattractant.
    Frontiers in Neurology 01/2015; 6. DOI:10.3389/fneur.2015.00004