Article

Bisphenol A: An endocrine and metabolic disruptor.

Inserm U1065/C3M, service d'endocrinologie, diabétologie et reproduction, hôpital de l'Archet 2, CHU de NICE, 151, route Saint-Antoine-de-Ginestière, 06202 Nice cedex 3, France. Electronic address: .
Annales d Endocrinologie (Impact Factor: 0.66). 06/2013; DOI: 10.1016/j.ando.2013.04.002
Source: PubMed

ABSTRACT Bisphenol A (BPA), initially designed, like diethylstilbestrol, as a synthetic estrogen, has been rapidly and widely used for its cross-linking properties in the manufacture of polycarbonate plastics and epoxy resins. Because of incomplete polymerization and degradation of the polymers by exposure to higher than usual temperatures, BPA leaches out from food and beverage containers, as well as from dental sealants. In humans, free active unconjugated BPA is metabolized by rapid glucurono- or sulfo-conjugation and eliminated via renal clearance. However, exposure to environmental nanomolar concentrations of BPA is ubiquitous and continuous via different routes: oral, air, skin. In rodents, fetal and perinatal exposure to such environmentally relevant doses of BPA has been shown to affect the brain, liver, gut, adipose tissue, endocrine pancreas, mammary gland and reproductive tract and function. Similar concentrations are also able in vitro to impact human malignant breast, prostate, male germ or adipocyte cell lines (with a promoting effect and by interfering with chemotherapy drugs), or to stimulate pancreatic β cell insulin secretion. High levels of BPA have recently been correlated with obesity, diabetes, cardiovascular diseases, polycystic ovarian disease or low sperm count. However, before the real impact of BPA on human health can be clearly assessed, prospective longitudinal epidemiological studies are needed as well as characterization of selective biomarkers to verify long-term exposure and selective imprinting.

4 Followers
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA) is suspected to be associated with several chronic metabolic diseases. The aim of the present study was to review the epidemiological literature on the relation between BPA exposure and the risk of cardiometabolic disorders. PubMed and Embase databases were searched up to August 2014 by two independent investigators using standardized subject terms. We included observational studies (cohort, case-control and cross-sectional studies) carried out in children or adults, measuring urinary BPA (uBPA), including at least 100 participants and published in English. The health outcomes of interest were diabetes, hyperglycemia, measures of anthropometry, cardiovascular disease (CVD) and hypertension. Data were extracted and meta-analyzed when feasible, using a random-effects model. Thirty-three studies with sample size ranging from 239 to 4811 met the inclusion criteria, including five with a prospective design. Twelve studies reported on diabetes or hyperglycemia, 16 on anthropometry, 6 on CVD and 3 on hypertension. Evidence for a positive association between uBPA concentrations and diabetes, overweight, obesity, elevated waist circumference (WC), CVD and hypertension was found in 7/8, 2/7, 6/7, 5/5, 4/5 and 2/3 of the cross-sectional studies, respectively. We were able to conduct outcome-specific meta-analyses including 12 studies. When comparing the highest vs. the lowest uBPA concentrations, the pooled ORs were 1.47 (95 % CI: 1.21-1.80) for diabetes, 1.21 (95 % CI: 0.98-1.50) for overweight, 1.67 (95 % CI: 1.41-1.98) for obesity, 1.48 (95 % CI: 1.25-1.76) for elevated WC, and 1.41 (95 % CI: 1.12-1.79) for hypertension. Moreover, among the five prospective studies, 3 reported significant findings, relating BPA exposure to incident diabetes, incident coronary artery disease, and weight gain. To conclude, there is evidence from the large body of cross-sectional studies that individuals with higher uBPA concentrations are more likely to suffer from diabetes, general/abdominal obesity and hypertension than those with lower uBPA concentrations. Given the potential importance for public health, prospective cohort studies with proper adjustment for dietary characteristics and identification of critical windows of exposure are urgently needed to further improve knowledge about potential causal links between BPA exposure and the development of chronic disease.
    Environmental Health 05/2015; 14(1):46. DOI:10.1186/s12940-015-0036-5 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical, and one of the major new issues is the safe replacement of this commonly used compound. Bisphenol S (BPS) and bisphenol F (BPF) are already or are planned to be used as BPA alternatives. With the use of a culture system that we developed (fetal testis assay [FeTA]), we previously showed that 10 nmol/L BPA reduces basal testosterone secretion of human fetal testis explants and that the susceptibility to BPA is at least 100-fold lower in rat and mouse fetal testes. Here, we show that addition of LH in the FeTA system considerably enhances BPA minimum effective concentration in mouse and human but not in rat fetal testes. Then, using the FeTA system without LH (the experimental conditions in which mouse and human fetal testes are most sensitive to BPA), we found that, as for BPA, 10 nmol/L BPS or BPF is sufficient to decrease basal testosterone secretion by human fetal testes with often nonmonotonic dose-response curves. In fetal mouse testes, the dose-response curves were mostly monotonic and the minimum effective concentrations were 1,000 nmol/L for BPA and BPF and 100 nmol/L for BPS. Finally, 10,000 nmol/L BPA, BPS, or BPF reduced Insl3 expression in cultured mouse fetal testes. This is the first report describing BPS and BPF adverse effects on a physiologic function in humans and rodents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Fertility and Sterility 12/2014; 103(1). DOI:10.1016/j.fertnstert.2014.11.005 · 4.30 Impact Factor
  • Toxicology Letters 09/2014; 229:S227. DOI:10.1016/j.toxlet.2014.06.761 · 3.36 Impact Factor