Vaccine Development for Tuberculosis: Current Progress

Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA, .
Drugs (Impact Factor: 4.34). 06/2013; 73(10). DOI: 10.1007/s40265-013-0081-8
Source: PubMed


Very substantial efforts have been made over the past decade or more to develop vaccines against tuberculosis. Historically, this began with a view to replace the current vaccine, Bacillus Calmette Guérin (BCG), but more recently most candidates are either new forms of this bacillus, or are designed to boost immunity in children given BCG as infants. Good progress is being made, but very few have, as yet, progressed into clinical trials. The leading candidate has advanced to phase IIb efficacy testing, with disappointing results. This article discusses the various types of vaccines, including those designed to be used in a prophylactic setting, either alone or BCG-boosting, true therapeutic (post-exposure) vaccines, and therapeutic vaccines designed to augment chemotherapy. While there is no doubt that progress is still being made, we have a growing awareness of the limitations of our animal model screening processes, further amplified by the fact that we still do not have a clear picture of the immunological responses involved, and the precise type of long-lived immunity that effective new vaccines will need to induce.

17 Reads
  • Source
    • "As noted before [2] [3], there are obvious limits to our use of animal models to test vaccines against tuberculosis. Such studies are expensive, and this climbs logarithmically with the size of the species [mouse, guinea pig, monkey]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of vaccination is to establish a stable population of long lived memory T cells. In the context of tuberculosis, the BCG vaccine has been widely used for well over 60 years, but during that time its weaknesses, particularly its ineffectiveness in adults, has been increasingly recognized. In this commentary we review what is known about memory T cells, both in general and in the context of their role in expressing specific acquired resistance to tuberculosis. Current knowledge indicates that both effector memory and central memory can be generated, depending on the experimental conditions, but both in animal models and in clinical studies it is clear that effector memory T cells are the predominant subset. These issues are of importance, given the concerted effort to make new TB vaccines, not all of which may work in precisely the same manner. At the present time whether a TB vaccine would work better if it targeted one specific T cell subset rather than another is as yet completely unknown, and this is now further complicated by new evidence that suggests other subsets such as IL-17 secreting CD4 T cells and cells with stem cell-like qualities may also play important roles.
    Tuberculosis 09/2014; 94(5). DOI:10.1016/ · 2.71 Impact Factor
  • Source
    • "Globally, it is estimated that two billion people are infected with M. tuberculosis, of which 10% develop active tuberculosis resulting in nearly 1.4 million deaths per year. Although there is currently a vaccine for tuberculosis, the attenuated M. bovis strain bacille calmette-guerin (BCG), it is considered to be largely ineffective (Orme, 2013). Another species of Mycobacterium that has made a significant impact on human health is M. leprae , the etiological agent of leprosy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: As the role of microRNA in all aspects of biology continues to be unraveled, the interplay between microRNAs and human disease is becoming clearer. It should come of no surprise that microRNAs play a major part in the outcome of infectious diseases, since early work has implicated microRNAs as regulators of the immune response. Here, we provide a review on how microRNAs influence the course of mycobacterial infections, which cause two of humanity's most ancient infectious diseases: tuberculosis and leprosy. Evidence derived from profiling and functional experiments suggests that regulation of specific microRNAs during infection can either enhance the immune response or facilitate pathogen immune evasion. Now, it remains to be seen if the manipulation of host cell microRNA profiles can be an opportunity for therapeutic intervention for these difficult-to-treat diseases.
    Frontiers in Genetics 07/2014; 5:231. DOI:10.3389/fgene.2014.00231
  • [Show abstract] [Hide abstract]
    ABSTRACT: The care of patients with respiratory diseases has improved vastly in the past 50 years. In spite of that, there are still massive challenges that have not been resolved. Although the incidence of tuberculosis has decreased in the developed world, it is still a significant public health problem in the rest of the world. There are still over 2 million deaths annually from tuberculosis, with most of these occurring in the developing world. Even with the development of new pharmaceuticals to treat tuberculosis, there is no indication that the disease will be eradicated. Respiratory syncytial virus, severe acute respiratory syndrome, and pertussis are other respiratory infectious diseases with special problems of their own, from vaccine development to vaccine coverage. Asthma, one of the most common chronic diseases in children, still accounts for significant mortality and morbidity, as well as high health care costs worldwide. Even in developed countries such as the USA, there are over 4,000 deaths per year. Severe asthma presents a special problem, but the question is whether there can be one treatment pathway for all patients with severe asthma. Severe asthma is a heterogeneous disease with many phenotypes and endotypes. The gene for cystic fibrosis was discovered over 24 years ago. The promise of gene therapy as a cure for the disease has fizzled out, and while new antimicrobials and other pharmaceuticals promise improved longevity and better quality of life, the average life span of a patient with cystic fibrosis is still at about 35 years. What are the prospects for gene therapy in the twenty-first century? Autoimmune diseases of the lung pose a different set of challenges, including the development of biomarkers to diagnose and monitor the disease and biological modulators to treat the disease.
    Clinical Reviews in Allergy & Immunology 11/2013; 45(3). DOI:10.1007/s12016-013-8399-2 · 5.46 Impact Factor
Show more

Similar Publications