Article

Knowledge-Based Design of a Biosensor to Quantify Localized ERK Activation in Living Cells.

Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Chemistry & biology (Impact Factor: 6.52). 06/2013; 20(6):847-56. DOI: 10.1016/j.chembiol.2013.04.016
Source: PubMed

ABSTRACT Investigation of protein activation in living cells is fundamental to understanding how proteins are influenced by the full complement of upstream regulators they experience. Here, we describe the generation of a biosensor based on the DARPin binding scaffold suited for intracellular applications. Combining library selection and knowledge-based design, we created an ERK activity biosensor by derivatizing a DARPin specific for phosphorylated ERK with a solvatochromatic merocyanine dye, whose fluorescence increases upon pERK binding. The biosensor specifically responded to pERK2, recognized by its conformation, but not to ERK2 or other closely related mitogen-activated kinases tested. Activated endogenous ERK was visualized in mouse embryo fibroblasts, revealing greater activation in the nucleus, perinuclear regions, and especially the nucleoli. The DARPin-based biosensor will serve as a useful tool for studying biological functions of ERK in vitro and in vivo.

1 Bookmark
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Designed ankyrin repeat proteins (DARPins) can recognize targets with specificities and affinities that equal or surpass those of antibodies, but because of their robustness and extreme stability, they allow a multitude of more advanced formats and applications. This review highlights recent advances in DARPin design, illustrates their properties, and gives some examples of their use. In research, they have been established as intracellular, real-time sensors of protein conformations and as crystallization chaperones. For future therapies, DARPins have been developed by advanced, structure-based protein engineering to selectively induce apoptosis in tumors by uncoupling surface receptors from their signaling cascades. They have also been used successfully for retargeting viruses. In ongoing clinical trials, DARPins have shown good safety and efficacy in macular degeneration diseases. These developments all ultimately exploit the high stability, solubility, and aggregation resistance of these molecules, permitting a wide range of conjugates and fusions to be produced and purified.
    Annual review of pharmacology and toxicology. 01/2015; 55:489-511.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce designed ankyrin repeat binding proteins (DARPins) as a novel class of highly specific and structure-selective DNA-binding proteins, which can be functionally expressed within all cells. Human telomere quadruplex was used as target to select specific binders with ribosome display. The selected DARPins discriminate the human telomere quadruplex against the telomeric duplex and other quadruplexes. Affinities of the selected binders range from 3 to 100 nM. CD studies confirm that the quadruplex fold is maintained upon binding. The DARPins show different specificity profiles: some discriminate human telomere quadruplexes from other quadruplex-forming sequences like ILPR, c-MYC and c-KIT, while others recognize two of the sequences tested or even all quadruplexes. None of them recognizes dsDNA. Quadruplex-binding DARPins constitute valuable tools for specific detection at very small scales and for the in vivo investigation of quadruplex DNA.
    Nucleic Acids Research 07/2014; 42(14). · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-canonical amino acids (ncAAs) provide powerful tools for engineering the chemical and physical properties of proteins. However, introducing ncAAs into proteins can affect protein properties in unpredictable ways, thus necessitating screening efforts to identify mutants with desirable properties. In this work, we describe an Escherichia coli cell surface display platform for the directed evolution of clickable antibody fragments. This platform enabled isolation of antibody fragments with improved digoxigenin binding and modest affinity maturation in several different ncAA contexts. Azide-functionalized fragments exhibited improved binding kinetics relative to their methionine counterparts, facile chemical modification through azide–alkyne cycloaddition, and retention of binding properties after modification. The results described here suggest new possibilities for protein engineering, including modulation of molecular recognition events by ncAAs and direct screening of libraries of chemically modified proteins.
    ChemBioChem 07/2014; · 3.06 Impact Factor

Full-text

Download
59 Downloads
Available from
May 28, 2014