Knowledge-Based Design of a Biosensor to Quantify Localized ERK Activation in Living Cells.

Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
Chemistry & biology (Impact Factor: 6.59). 06/2013; 20(6):847-56. DOI: 10.1016/j.chembiol.2013.04.016
Source: PubMed

ABSTRACT Investigation of protein activation in living cells is fundamental to understanding how proteins are influenced by the full complement of upstream regulators they experience. Here, we describe the generation of a biosensor based on the DARPin binding scaffold suited for intracellular applications. Combining library selection and knowledge-based design, we created an ERK activity biosensor by derivatizing a DARPin specific for phosphorylated ERK with a solvatochromatic merocyanine dye, whose fluorescence increases upon pERK binding. The biosensor specifically responded to pERK2, recognized by its conformation, but not to ERK2 or other closely related mitogen-activated kinases tested. Activated endogenous ERK was visualized in mouse embryo fibroblasts, revealing greater activation in the nucleus, perinuclear regions, and especially the nucleoli. The DARPin-based biosensor will serve as a useful tool for studying biological functions of ERK in vitro and in vivo.

Download full-text


Available from: Andreas Plückthun, Jul 03, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: We here describe a convenient method for preparation, fixation and fluorescence analysis of in vitro cultivated metacestode vesicles from E. multilocularis. Parasite materials could be prepared in one hour, did not need to be sectioned, and were subsequently utilized for further whole-mount staining assays directly. Using these preparations, in combination with conventional fluorescence staining techniques, we could detect the expression and subcellular localization of a specific protein and identify in situ proliferative or apoptotic cells in the germinal layer of metacestode vesicles. Based on this approach, future molecular and cellular analysis of Echinococcus metacestode vesicles in the in vitro system will be greatly facilitated.
    PLoS ONE 02/2015; 10(2):e0118215. DOI:10.1371/journal.pone.0118215 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The annual European Antibody Congress (EAC) has traditionally been the key event for updates on critical scientific advances in the antibody field, and 2013 was no exception. Organized by Terrapinn, the well-attended meeting featured presentations on considerations for developing antibodies and antibody-like therapeutics, with separate tracks for antibody-drug conjugates, naked antibodies, and multispecific antibodies or protein scaffolds. The overall focus of the EAC was current approaches to enhance the functionality of therapeutic antibodies or other targeted proteins, with the ultimate goal being improvement of the safety and efficacy of the molecules as treatments for cancer, immune-mediated disorders and other diseases. Roundtable discussion sessions gave participants opportunities to engage in group discussions with industry leaders from companies such as Genmab, Glenmark Pharmaceuticals, MedImmune, Merrimack Pharmaceuticals, and Pierre Fabre. As the 2013 EAC was co-located with the World Biosimilar Congress, participants also received an update on European Medicines Agency guidelines and thoughts on the future direction and development of biosimilar antibodies in the European Union.
    mAbs 01/2014; 6(2). DOI:10.4161/mabs.27903 · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies are the most versatile binding proteins in nature with six loops creating a flexible continuous interaction surface. However, in some molecular formats, antibodies are aggregation prone. Designed ankyrin repeat proteins (DARPins) were successfully created as alternative design solutions. Nevertheless, their concave shape, rigidity and incompletely randomized binding surface may limit the epitopes that can be targeted by this extremely stable scaffold. Combining conformational diversity and a continuous convex paratope found in many antibodies with the beneficial biophysical properties of DARPins, we created LoopDARPins, a next generation of DARPins with extended epitope binding properties. We employed X-ray structure determination of a LoopDARPin for design validation. Biophysical characterizations show that the introduction of an elongated loop through consensus design does not decrease the stability of the scaffold, consistent with molecular dynamics simulations. Ribosome-display selections against extracellular signal-regulated kinase 2 (ERK2) and four members of the BCL-2 family (BCL-2, BCL-XL, BCL-W and MCL-1) of anti-apoptotic regulators yielded LoopDARPins with affinities in the mid-picomolar to low nanomolar range against all targets. The BCL-2 family binders block the interaction with their natural interaction partner and will be valuable reagents to test the apoptotic response in functional assays. With the LoopDARPin scaffold, binders for BCL-2 with an affinity of 30 pM were isolated with only a single round of ribosome display, an enrichment that has not been described for any scaffold. Identical stringent one-round selections with conventional DARPins without loop yielded no binders. The LoopDARPin scaffold may become a highly valuable tool for biotechnological high-throughput applications.
    Journal of Molecular Biology 02/2014; 426(3):691–721. DOI:10.1016/j.jmb.2013.10.026 · 3.96 Impact Factor