Article

Marker-Assisted Selection in Tomato Breeding

Critical Reviews in Plant Sciences (Impact Factor: 5.29). 03/2012; 31(2):93-123. DOI: 10.1080/07352689.2011.616057

ABSTRACT The cultivated tomato, Solanum lycopersicum L., is the second most consumed vegetable crop after potato and unquestionably the most popular garden crop in the world. There are more varieties of tomato sold worldwide than any other vegetable crop. Most of the commercial cultivars of tomato have been developed through phenotypic selection and traditional breeding. However, with the advent of molecular markers and marker-assisted selection (MAS) technology, tomato genetics and breeding research has entered into a new and exciting era. Molecular markers have been used extensively for genetic mapping as well as identification and characterization of genes and QTLs for many agriculturally important traits in tomato, including disease and insect resistance, abiotic stress tolerance, and flower- and fruit-related characteristics. The technology also has been utilized for marker-assisted breeding for several economically important traits, in particular disease resistance. However, the extent to which MAS has been employed in public and private tomato breeding programs has not been clearly determined. The objectives of this study were to review the publically-available molecular markers for major disease resistance traits in tomato and assess their current and potential use in public and private tomato breeding programs. A review of the literature indicated that although markers have been identified for most disease resistance traits in tomato, not all of them have been verified or are readily applicable in breeding programs. For example, many markers are not validated across tomato genotypes or are not polymorphic within tomato breeding populations, thus greatly reducing their utility in crop improvement programs. However, there seems to be a considerable use of markers, particularly in the private sector, for various purposes, including testing hybrid purity, screening breeding populations for disease resistance, and marker assisted backcross breeding. Here we provide a summary of molecular markers available for major disease resistance traits in tomato and discuss their actual use in tomato breeding programs. It appears that many of the available markers may need to be further refined or examined for trait association and presence of polymorphism in breeding populations. However, with the recent advances in tomato genome and transcriptome sequencing, it is becoming increasingly possible to develop new and more informative PCR-based markers, including single nucleotide polymorphisms (SNPs), to further facilitate the use of markers in tomato breeding. It is also expected that more markers will become available via the emerging technology of genotyping by sequencing (GBS).

1 Bookmark
 · 
483 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comparative analysis of the genome sequences of Solanum lycopersicum variety Heinz 1706 and S. pimpinellifolium accession LA 1589 using MUGSY software identified 145 695 insertion-deletion (InDel) polymorphisms. A selected set of 3029 candidate InDels (≥2 bp) across the entire tomato genome were subjected to PCR validation, and 82.4% could be verified. Of 2272 polymorphic InDels between LA 1589 and Heinz 1706, 61.6, 45.2, and 31.6% were polymorphic in 8 accessions of S. pimpinellifolium, 4 accessions of S. lycopersicum var. cerasiforme, and 10 varieties of S. lycopersicum, respectively. Genetic distance was 0.216 in S. pimpinellifolium, 0.202 in S. lycopersicum var. cerasiforme, and 0.108 in S. lycopersicum. The data suggested a reduction of genetic variation from S. pimpinellifolium to S. lycopersicum var. cerasiforme and S. lycopersicum. Cluster analysis showed that the 8 accessions of S. pimpinellifolium were in one group, whereas 4 accessions of S. lycopersicum var. cerasiforme and 10 varieties of S. lycopersicum were in the same group.
    DNA Research 03/2014; · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When a wild species' allele at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely-linked loci that are transferred along with the desired QTL allele (i.e., linkage drag), and/or from pleiotropic effects of the desired allele. Previously, a QTL for resistance to Phytophthora infestans on chromosome 5 of Solanum habrochaites was mapped and introgressed into cultivated tomato (S. lycopersicum). Near-isogenic lines (NILs) were generated and used for fine-mapping of this resistance QTL, which revealed coincident or linked QTL with undesirable effects on yield, maturity, fruit size, and plant architecture traits. Subsequent higher-resolution mapping with chromosome 5 sub-NILs revealed the presence of multiple P. infestans resistance QTL within this 12.3 cM region. In our present study, these sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over two years. Each previously detected single horticultural trait QTL fractionated into two or more QTL. A total of 41 QTL were detected across all traits, with ~30% exhibiting significant QTL × environment interactions. Co-location of QTL for multiple traits suggests either pleiotropy or tightly-linked genes control these traits. The complex genetic architecture of horticultural and P. infestans resistance trait QTL within this S. habrochaites region of chromosome 5 presents challenges and opportunities for breeding efforts in cultivated tomato.
    G3-Genes Genomes Genetics 10/2013; · 2.51 Impact Factor
  • Source
    BMC Plant Biology 12/2013; 2013(13):197. · 3.94 Impact Factor