Article

Marker-Assisted Selection in Tomato Breeding

Critical Reviews in Plant Sciences (Impact Factor: 5.29). 03/2012; 31(2):93-123. DOI: 10.1080/07352689.2011.616057

ABSTRACT The cultivated tomato, Solanum lycopersicum L., is the second most consumed vegetable crop after potato and unquestionably the most popular garden crop in the world. There are more varieties of tomato sold worldwide than any other vegetable crop. Most of the commercial cultivars of tomato have been developed through phenotypic selection and traditional breeding. However, with the advent of molecular markers and marker-assisted selection (MAS) technology, tomato genetics and breeding research has entered into a new and exciting era. Molecular markers have been used extensively for genetic mapping as well as identification and characterization of genes and QTLs for many agriculturally important traits in tomato, including disease and insect resistance, abiotic stress tolerance, and flower- and fruit-related characteristics. The technology also has been utilized for marker-assisted breeding for several economically important traits, in particular disease resistance. However, the extent to which MAS has been employed in public and private tomato breeding programs has not been clearly determined. The objectives of this study were to review the publically-available molecular markers for major disease resistance traits in tomato and assess their current and potential use in public and private tomato breeding programs. A review of the literature indicated that although markers have been identified for most disease resistance traits in tomato, not all of them have been verified or are readily applicable in breeding programs. For example, many markers are not validated across tomato genotypes or are not polymorphic within tomato breeding populations, thus greatly reducing their utility in crop improvement programs. However, there seems to be a considerable use of markers, particularly in the private sector, for various purposes, including testing hybrid purity, screening breeding populations for disease resistance, and marker assisted backcross breeding. Here we provide a summary of molecular markers available for major disease resistance traits in tomato and discuss their actual use in tomato breeding programs. It appears that many of the available markers may need to be further refined or examined for trait association and presence of polymorphism in breeding populations. However, with the recent advances in tomato genome and transcriptome sequencing, it is becoming increasingly possible to develop new and more informative PCR-based markers, including single nucleotide polymorphisms (SNPs), to further facilitate the use of markers in tomato breeding. It is also expected that more markers will become available via the emerging technology of genotyping by sequencing (GBS).

13 Followers
 · 
539 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most rosaceous tree fruit have long juvenility and large plant sizes, which makes traditional seedling selection (TSS), relying on phenotypic evaluation alone, relatively time-consuming and expensive. Limited predictiveness of phenotypic information also restricts the accuracy of TSS for traits with low heritability. Marker-assisted seedling selection (MASS) uses DNA markers to provide an early DNA-based evaluation of genetic performance potential of seedlings, with the aim of improving cost and/or genetic efficiency of seedling selection. MASS is still not widely adopted in rosaceous tree fruit breeding despite some successful examples. This review assesses reported MASS successes and identifies key elements and remaining challenges. Suggested solutions to widespread MASS adoption in Rosaceae tree fruit breeding are to (1) provide more breeding-program-specific DNA tests for high-impact attributes, (2) develop approaches to readily identify efficient MASS schemes, (3) increase access to service providers specialized in DNA testing for rosaceous tree fruit breeding programs, (4) obtain funds to initially implement MASS, and (5) develop software tools and provide training to apply DNA information. Overcoming current challenges of implementing MASS is likely to facilitate its adoption in scenarios already proven to be effective: where DNA testing is conducted at an early seedling stage for single or multiple traits without significant interactions between them and where trait loci targeted by DNA tests have a major influence on trait levels.
    Tree Genetics & Genomes 02/2015; 11(1-1):1-12. DOI:10.1007/s11295-015-0834-5 · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multispectral imaging is an emerging non-destructive technology. In this work its potential for varietal discrimination and identification of tomato cultivars of Nepal was investigated. Two sample sets were used for the study, one with two parents and their crosses and other with eleven cultivars to study parents and offspring relationship and varietal identification respectively. Normalized canonical discriminant analysis (nCDA) and principal component analysis (PCA) were used to analyze and compare the results for parents and offspring study. Both the results showed clear discrimination of parents and offspring. nCDA was also used for pairwise discrimination of the eleven cultivars, which correctly discriminated upto 100% and only few pairs below 85%. Partial least square discriminant analysis (PLS-DA) was further used to classify all the cultivars. The model displayed an overall classification accuracy of 82%, which was further improved to 96% and 86% with stepwise PLS-DA models on high (seven) and poor (four) sensitivity cultivars, respectively. The stepwise PLS-DA models had satisfactory classification errors for cross-validation and prediction 7% and 7%, respectively. The results obtained provide an opportunity of using multispectral imaging technology as a primary tool in a scientific community for identification/discrimination of plant varieties in regard to genetic purity and plant variety protection/registration.
    Sensors 02/2015; 15(15):4496-4512. DOI:10.3390/s150204496 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multispectral imaging is an emerging non-destructive technology. In this work its potential for varietal discrimination and identification of tomato cultivars of Nepal was investigated. Two sample sets were used for the study, one with two parents and their crosses and other with eleven cultivars to study parents and offspring relationship and varietal identification respectively. Normalized canonical discriminant analysis (nCDA) and principal component analysis (PCA) were used to analyze and compare the results for parents and offspring study. Both the results showed clear discrimination of parents and offspring. nCDA was also used for pairwise discrimination of the eleven cultivars, which correctly discriminated upto 100% and only few pairs below 85%. Partial least square discriminant analysis (PLS-DA) was further used to classify all the cultivars. The model displayed an overall classification accuracy of 82%, which was further improved to 96% and 86% with stepwise PLS-DA models on high (seven) and poor (four) sensitivity cultivars, respectively. The stepwise PLS-DA models had satisfactory classification errors for cross-validation and prediction 7% and 7%, respectively. The results obtained provide an opportunity of using multispectral imaging technology as a primary tool in a scientific community for identification/discrimination of plant varieties in regard to genetic purity and plant variety protection/registration.
    Sensors 02/2015; 15:4496-4512. · 2.05 Impact Factor