Article

The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans.

Dental Research Institute, Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, Ontario M5G1G6, Canada.
Journal of bacteriology (Impact Factor: 2.69). 03/2009; 191(9):2973-84. DOI: 10.1128/JB.01563-08
Source: PubMed

ABSTRACT Maintaining cell envelope integrity is critical for bacterial survival, including bacteria living in a complex and dynamic environment such as the human oral cavity. Streptococcus mutans, a major etiological agent of dental caries, uses two-component signal transduction systems (TCSTSs) to monitor and respond to various environmental stimuli. Previous studies have shown that the LiaSR TCSTS in S. mutans regulates virulence traits such as acid tolerance and biofilm formation. Although not examined in streptococci, homologs of LiaSR are widely disseminated in Firmicutes and function as part of the cell envelope stress response network. We describe here liaSR and its upstream liaF gene in the cell envelope stress tolerance of S. mutans strain UA159. Transcriptional analysis established liaSR as part of the pentacistronic liaFSR-ppiB-pnpB operon. A survey of cell envelope antimicrobials revealed that mutants deficient in one or all of the liaFSR genes were susceptible to Lipid II cycle interfering antibiotics and to chemicals that perturbed the cell membrane integrity. These compounds induced liaR transcription in a concentration-dependent manner. Notably, under bacitracin stress conditions, the LiaFSR signaling system was shown to induce transcription of several genes involved in membrane protein synthesis, peptidoglycan biosynthesis, envelope chaperone/proteases, and transcriptional regulators. In the absence of an inducer such as bacitracin, LiaF repressed LiaR-regulated expression, whereas supplementing cultures with bacitracin resulted in derepression of liaSR. While LiaF appears to be an integral component of the LiaSR signaling cascade, taken collectively, we report a novel role for LiaFSR in sensing cell envelope stress and preserving envelope integrity in S. mutans.

0 Bookmarks
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of daptomycin (DAP) resistance in Enterococcus faecalis has recently been associated with mutations in genes encoding proteins with two main functions: (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase [cls]). However, the genetic bases for DAP resistance in Enterococcus faecium are unclear. We performed whole-genome comparative analysis of a clinical strain pair, DAP-susceptible E. faecium S447 and its DAP-resistant derivative R446, which was recovered from a single patient during DAP therapy. By comparative whole-genome sequencing, DAP resistance in R446 was associated with changes in 8 genes. Two of these genes encoded proteins involved in phospholipid metabolism: (i) an R218Q substitution in Cls and (ii) an A292G reversion in a putative cyclopropane fatty acid synthase enzyme. The DAP-resistant derivative R446 also exhibited an S333L substitution in the putative histidine kinase YycG, a member of the YycFG system, which, similar to LiaFSR, has been involved in cell envelope homeostasis and DAP resistance in other Gram-positive cocci. Additional changes identified in E. faecium R446 (DAP resistant) included two putative proteins involved in transport (one for carbohydrate and one for sulfate) and three enzymes predicted to play a role in general metabolism. Exchange of the “susceptible” cls allele from S447 for the “resistant” one belonging to R446 did not affect DAP susceptibility. Our results suggest that, apart from the LiaFSR system, the essential YycFG system is likely to be an important mediator of DAP resistance in some E. faecium strains.
    Antimicrobial Agents and Chemotherapy 01/2013; 57(1). · 4.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain Gram-positive bacteria. However, the effectiveness of nisin is often affected by environmental factors such as pH, temperature, food composition, structure, as well as food microbiota. The development of nisin resistance has been seen among various Gram-positive bacteria. The mechanisms under the acquisition of nisin resistance are complicated and may differ among strains. This paper presents a brief review of possible mechanisms of the development of resistance to nisin among Gram-positive bacteria.
    Annals of Microbiology 06/2013; · 1.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adaptive strategies of bacilli involving genetic regulatory mechanisms are reviewed. The role of master regulators and signal transduction systems that coordinate the interaction of the extracellular signals and the genetic programs responsible for the metabolic state of bacteria are discussed. Most of the known regulatory pathways are directly or indirectly regulated by the DegU, Spo0A, AbrB, and CodY global regulators. The main factor affecting the development of cell phenotype is the concentration of the regulatory protein and its ability to bind with varying affinity to promoters of the genes and operons. The effect of the regulatory systems on the bistability of microbial populations is discussed.
    Microbiology 05/2013; 82(3). · 0.71 Impact Factor

Full-text (2 Sources)

Download
7 Downloads
Available from
Aug 14, 2014