Article

What is the role of genetics in occupational asthma?

Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Ferrara, Via Fossato di Mortara 64 B, 44100 Ferrara, Italy. .
European Respiratory Journal (Impact Factor: 7.13). 04/2009; 33(3):459-60. DOI: 10.1183/09031936.00183508
Source: PubMed
0 Bookmarks
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Work-related asthma (WRA) includes occupational asthma and work-exacerbated asthma. WRA is by definition preventable. This chapter discusses available tools for prevention of WRA, divided into primary and secondary prevention. For each tool, the available evidence for the effectiveness of the tool is summarized, and examples are provided. Primary prevention addresses healthy workers or persons with asthma due to causes unrelated to work. The principal tool is control of occupational exposure, reached by elimination or reduction in exposure, but vocational guidance and pre-employment screening are also regarded as primary prevention tools. Secondary prevention addresses early detection of work-related sensitization or WRA to prevent further progression. The principal tool for secondary prevention is medical surveillance. Prediction models represent a promising new tool in medical surveillance; this tool is described here in general and by an example. To set priorities for the prevention of WRA, the monitoring of occurrence in populations as well as in specific industries is crucial, and this chapter therefore briefly describes different sources for surveillance data including sentinel reporting systems, population studies, and occupational disease registers. In the future, focus should be on well-conducted intervention studies, improved exposure assessment, improved medical surveillance (e.g., using prediction models) and good quality national surveillance programs.
    02/2011: pages 281-298;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The burden of asthma attributable to occupational exposures is significant. A better evaluation of markers of asthma and rhinitis in occupational settings may help reduce the frequency of occupational asthma (OA) and rhinitis (OR). This publication reviews articles published in 2008 and 2009 to provide an update on aspects related to markers of asthma and rhinitis. Markers derived from occupational exposure assessment, questionnaires, clinical data, and noninvasive tests such as functional tests or measures of serum antibodies are used to develop prediction models for the likelihood of OA and OR development. Findings from prospective studies highlight the course of preclinical signs and markers of airway inflammation in the natural history of OA and OR. Airway inflammation, evaluated by quantification of cells and mediators in induced sputum or nasal lavage and by exhaled nitric oxide, is associated with OA and OR; however, the sensitivity and specificity of these means, especially exhaled nitric oxide, have not been sufficiently assessed.
    Current Allergy and Asthma Reports 09/2010; 10(5):365-72. · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For more than a century, clinicians have attempted to subdivide asthma into different phenotypes based on triggers that cause asthma attacks, the course of the disease, or the prognosis. The first phenotypes that were described included allergic asthma, intrinsic or nonallergic asthma, infectious asthma, and aspirin-exacerbated asthma. These phenotypes are being reviewed elsewhere in this issue of the journal. The present article focuses on developing and emerging clinical asthma phenotypes. First, asthma phenotypes that are associated with environmental exposures (occupational agents, cigarette smoke, air pollution, cold dry air); second, asthma phenotypes that are associated with specific symptoms or clinical characteristics (cough, obesity, adult onset of disease); and third, asthma phenotypes that are based on biomarkers. This latter approach is the most promising because it attempts to identify asthma phenotypes with different underlying mechanisms so that therapies can be better targeted toward disease-specific features and disease outcomes can be improved.
    The Journal of Allergy and Clinical Immunology: In Practice. 11/2014;

Preview

Download
0 Downloads
Available from