Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice.

Massachusetts General Hospital, Department of Neurology/Alzheimer's Disease Research Laboratory, 114 16th Street, Charlestown, MA 02129, USA.
Science (Impact Factor: 31.48). 03/2009; 323(5918):1211-5. DOI: 10.1126/science.1169096
Source: PubMed

ABSTRACT Although senile plaques focally disrupt neuronal health, the functional response of astrocytes to Alzheimer's disease pathology is unknown. Using multiphoton fluorescence lifetime imaging microscopy in vivo, we quantitatively imaged astrocytic calcium homeostasis in a mouse model of Alzheimer's disease. Resting calcium was globally elevated in the astrocytic network, but was independent of proximity to individual plaques. Time-lapse imaging revealed that calcium transients in astrocytes were more frequent, synchronously coordinated across long distances, and uncoupled from neuronal activity. Furthermore, rare intercellular calcium waves were observed, but only in mice with amyloid-beta plaques, originating near plaques and spreading radially at least 200 micrometers. Thus, although neurotoxicity is observed near amyloid-beta deposits, there exists a more general astrocyte-based network response to focal pathology.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Over the past 20 years, astrocytes, a type of brain cells that were considerably disregarded, have gradually been found to actually display remarkable properties. In contrast with neurons, which communicate through changes in their membrane potential, astrocytes communicate as networks through propagated changes in their internal calcium concentration. While still hotly debated, recent findings even indicate that astrocytic activity could influence neuronal activity in several ways, including the modulation of synaptic plasticity between neurons. How exactly these astrocytes react to neuronal activity as individual cells and as a network is however still unclear. In this work, we address this question by using neuron-astrocyte cell cultures that we stimulate with multi-electrode arrays in conjunction with a computational model of neuron-astrocyte communication. Our results show that astrocytes respond to neuronal activity in a frequency-dependent manner through glutamat
    PLoS Computational Biology 12/2014; 10(12):e1003964. · 4.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytic network alterations have been reported in Alzheimer's disease (AD), but the underlying pathways have remained undefined. Here we measure astrocytic calcium, cerebral blood flow and amyloid-β plaques in vivo in a mouse model of AD using multiphoton microscopy. We find that astrocytic hyperactivity, consisting of single-cell transients and calcium waves, is most pronounced in reactive astrogliosis around plaques and is sometimes associated with local blood flow changes. We show that astroglial hyperactivity is reduced after P2 purinoreceptor blockade or nucleotide release through connexin hemichannels, but is augmented by increasing cortical ADP concentration. P2X receptor blockade has no effect, but inhibition of P2Y1 receptors, which are strongly expressed by reactive astrocytes surrounding plaques, completely normalizes astrocytic hyperactivity. Our data suggest that astroglial network dysfunction is mediated by purinergic signalling in reactive astrocytes, and that intervention aimed at P2Y1 receptors or hemichannel-mediated nucleotide release may help ameliorate network dysfunction in AD.
    Nature Communications 11/2014; · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence suggests that glial cells express virtually all known types of neurotransmitter receptors, enabling them to sense neuronal activity and microenvironment changes by responding locally via the Ca(2+)-dependent release of bioactive molecules, known as "gliotransmitters". Several mechanisms of gliotransmitter release have been documented. One of these mechanisms involves the opening of plasma membrane channels, known as hemichannels. These channels are composed of six protein subunits consisting of connexins or pannexins, two highly conserved protein families encoded by 21 or 3 genes, respectively, in humans. Most data indicate that under physiological conditions, glial cell hemichannels have low activity, but this activity is sufficient to ensure the release of relevant quantities of gliotransmitters to the extracellular milieu, including ATP, glutamate, adenosine and glutathione. Nevertheless, it has been suggested that dysregulations of hemichannel properties could be critical in the beginning and during the maintenance of homeostatic imbalances observed in several brain diseases. In this study, we review the current knowledge on the hemichannel-dependent release of gliotransmitters in the physiology and pathophysiology of the CNS. Copyright © 2014. Published by Elsevier Ltd.
    Neuroscience 12/2014; 286. · 3.33 Impact Factor

Full-text (2 Sources)

Available from
Jul 4, 2014