Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis

Molecular and Cellular Biology Research, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
Cancer cell (Impact Factor: 23.52). 04/2009; 15(3):232-9. DOI: 10.1016/j.ccr.2009.01.021
Source: PubMed


Herein we report that the VEGFR/PDGFR kinase inhibitor sunitinib/SU11248 can accelerate metastatic tumor growth and decrease overall survival in mice receiving short-term therapy in various metastasis assays, including after intravenous injection of tumor cells or after removal of primary orthotopically grown tumors. Acceleration of metastasis was also observed in mice receiving sunitinib prior to intravenous implantation of tumor cells, suggesting possible "metastatic conditioning" in multiple organs. Similar findings with additional VEGF receptor tyrosine kinase inhibitors implicate a class-specific effect for such agents. Importantly, these observations of metastatic acceleration were in contrast to the demonstrable antitumor benefits obtained when the same human breast cancer cells, as well as mouse or human melanoma cells, were grown orthotopically as primary tumors and subjected to identical sunitinib treatments.

Download full-text


Available from: James G Christensen,
  • Source
    • "This may affect not only the efficacy of the therapy but also the putative development of resistance. Relating to the studies by Paez-Ribes et al. (2009) and Ebos et al. (2009) "
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept of antiangiogenic therapy in cancer treatment has led to the approval of different agents, most of them targeting the well known vascular endothelial growth factor pathway. Despite promising results in preclinical studies, the efficacy of antiangiogenic therapy in the clinical setting remains limited. Recently, awareness has emerged on resistance to antiangiogenic therapies. It has become apparent that the intricate complex interplay between tumors and stromal cells, including endothelial cells and associated mural cells, allows for escape mechanisms to arise that counteract the effects of these targeted therapeutics. Here, we review and discuss known and novel mechanisms that contribute to resistance against antiangiogenic therapy and provide an outlook to possible improvements in therapeutic approaches.
    Pharmacological Reviews 03/2015; 67:441-461. · 17.10 Impact Factor
  • Source
    • "Indeed, addition of bevacizumab to first-line chemotherapy in advanced colorectal cancer resulted in an overall survival benefit [13]. However, caution is warranted regarding unanticipated effects since studies with VEGFR-targeting compounds in murine models provided evidence for increased metastatic propensity [14] [15]. Chimeric monoclonal antibody G250 (cG250/Girentuximab) targets human carbonic anhydrase IX (CAIX), a transmembrane protein which catalyzes the reaction CO 2 + H 2 O↔HCO 3 − + H + . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-angiogenic treatment with tyrosine kinase inhibitors (TKI) has lead to an impressive increase in progression-free survival for patients with metastatic RCC (mRCC), but mRCC remains largely incurable. We combined sunitinib, targeting the endothelial cells with Girentuximab (monoclonal antibody cG250, recognizing carbonic anhydrase IX (CAIX) targeting the tumor cells to study the effect of sunitinib on the biodistribution of Girentuximab because combination of modalities targeting tumor vasculature and tumor cells might result in improved effect. Nude mice with human RCC xenografts (NU12, SK-RC-52) were treated orally with 0.8 mg/day sunitinib, or vehicle for 7 to 14 days. Three days before start or cessation of treatment mice were injected i.v. with 0.4 MBq/5 μg (111)In-Girentuximab followed by biodistribution studies. Immunohistochemical analyses were performed to study the tumor vasculature and CAIX expression and to confirm Girentuximab uptake. NU12 appeared to represent a sunitinib sensitive tumor: sunitinib treatment resulted in extensive necrosis and decreased microvessel density (MVD). Accumulation of Girentuximab was significantly decreased when sunitinib treatment preceded the antibody injection but remained unchanged when sunitinib followed Girentuximab injection. Cessation of therapy led to a rapid neovascularization, reminiscent of a tumor flare. SK-RC-52 appeared to represent a sunitinib-resistant tumor: (central) tumor necrosis was minimal and MVD was not affected. Sunitinib treatment resulted in increased Girentuximab uptake, regardless of the sequence of treatment. These data indicate that sunitinib can be combined with Girentuximab. Since these two modalities have different modes of action, this combination might lead to enhanced therapeutic efficacy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Neoplasia (New York, N.Y.) 02/2015; 49(2). DOI:10.1016/j.neo.2014.12.011 · 4.25 Impact Factor
  • Source
    • "Metastasis is further enabled due to the poor structural integrity of the tumor blood vessels and pathological angiogenesis-associated tumor hypoxia. Recently, anti-angiogenic therapy has been reported to cause an increased metastatic phenotype, possibly via elevated tumor hypoxia and hypoxia-induced epithelial to mesenchymal transition (EMT) [80] [81] [82]. Anti-angiogenic therapy may however also increase the metastatic potential of tumor cells through adaptive resistance pathways not associated with hypoxia [83], indicating that antiangiogenic therapy-induced changes in the tumor phenotype may lead to a more aggressive disease through a number of different mechanisms. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Deregulation of angiogenesis–the growth of new blood vessels from an existing vasculature–is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy; 1) endothelial cell migration/tip cell formation, 2) structural abnormalities of tumor vessels, 3) hypoxia, 4) lymphangiogenesis, 5) elevated interstitial fluid pressure, 6) poor perfusion, 7) disrupted circadian rhythms, 8) tumor promoting inflammation, 9) tumor promoting fibroblasts and 10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds; 1) oleic acid, 2) tripterine, 3) silibinin, 4) curcumin, 5) epigallocatechin-gallate, 6) kaempferol, 7) melatonin, 8) enterolactone, 9) withaferin A and 10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
    Seminars in Cancer Biology 01/2015; · 9.33 Impact Factor
Show more